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Abstract

We present an interactive perceptual skill for segmenting, tracking, and kinematic
modeling of 3D articulated objects. This skill is a prerequisite for general manipu-
lation in unstructured environments. Robot-environment interaction is used to move
an unknown object, creating a perceptual signal that reveals the kinematic properties
of the object. The resulting perceptual information can then inform and facilitate fur-
ther manipulation. The algorithm is computationally efficient, handles occlusion, and
depends on little object motion; it only requires sufficient texture for visual feature
tracking. We conducted experiments with everyday objects on a mobile manipula-
tion platform equipped with an RGB-D sensor. The results demonstrate the robustness
of the proposed method to lighting conditions, object appearance, size, structure, and
configuration.
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1 Introduction

We propose an interactive perceptual skill for the manipulation of unknown objects
that possess inherent degrees of freedom (see Fig.[). This category of objects—rigid
articulated objects—includes many everyday objects ranging from pliers, scissors and
staplers, to windows, doors, drawers, books, and toys. To manipulate an articulated
object, the robot must be able to deliberately change its configuration. For example, to
manipulate a door, the degree of freedom (hinge) connecting the door to its frame is
actuated.

In this paper, we develop the necessary interactive perceptual capabilities to seg-
ment an object out of its cluttered background, track the object’s position and configu-
ration over time, and model its kinematic structure. These capabilities are fundamental
for purposeful manipulation.

determine its kinematic structure. It is also difficult to manipulate a complex ob-
ject without continuous feedback. Thus, we argue that perception and manipulation
cannot be separated. We propose to develop adequate capabilities for autonomous ma-
nipulation by closely integrating action and perception. We refer to this process as
“Interactive Perception” (Fig.[2).

We contend that perception and manipulation fundamentally cannot be separated:
it is difficult, if at all possible, to visually segment an unknown object and determine
its kinematic structure; equally, it is difficult to manipulate a complex object without
continuous sensing feedback. We refer to the combined process as “Interactive Percep-
tion” (Fig.[2). In interactive perception, the robot manipulates the environment in order
to assist the perceptual process. Perception, in turn, provides information necessary for
successful manipulation. Interactive perception enables the robot to perceive the out-
come of its interactions, and therefore to interpret the sensor stream within the context
of its actions.

In the following, we rely on interactive perception to generate relative motion, a
strong visual signal. This relative motion reveals properties of the environment that
would otherwise remain hidden. In our case, interaction reveals the degree of freedom
and shape of objects.

Our perceptual skill requires an RGB-D sensor. This sensor co-registers color and
depth images (e.g. structured light sensors or co-registered LADAR and cameras). It
provides our robot with the visual information necessary to model new objects. We
complement this visual information with interaction. In this paper, the robot’s inter-
actions with the environment are scripted. However, interactions can be learned from
experience (e.g., see [7]). Our skill assumes no prior object models. It is insensitive to
changes in lighting conditions, object size, configuration and appearance. It can model
objects with an arbitrary number of degrees of freedom. It is also computationally ef-
ficient. Additionally, it allows for objects to be occluded by the manipulator during the
interaction. The algorithm relies on only two assumptions: objects have enough tex-
ture to enable feature tracking, and the robot is capable of exciting the object’s degrees
of freedom—a reasonable assumption given that our goal is to acquire information for
manipulating the object.

In the following, we describe our interactive perceptual skill in detail. In Section 2]
we discuss related work, and argue that our approach outperforms prior work in speed,



Figure 1: Objects that possess inherent degrees of freedom. These degrees of freedom
are closely related to the function of the object. Without prior knowledge, the degrees
of freedom of an object cannot be extracted from visual information alone. They have
to be discovered through interaction.

Figure 2: Our mobile manipulator interacts with an unknown articulated object
(checkerboard). The proposed interactive perceptual skill segments the object, tracks
its position, and models its shape and kinematic structure.

robustness, and generality. In sections [3}—[6] we provide the details of our implemen-
tation. Then, in section[7, we present experiments that demonstrate our robot’s ability
to segment, track and model the shape and kinematic structure of everyday objects.

2 Related Work

Manipulating articulated objects is a prerequisite for a large variety of manipulation
tasks. Given a priori object and environment models, robots are already capable of
performing complex manipulation tasks with high precision and speed. Therefore, we
believe that perception is a key obstacle for autonomous manipulation of unknown
objects.

Our perceptual skill is composed of two important steps: segmenting the distinct
rigid bodies in the scene, and determining the kinematic constraints between these
bodies. We now review the methods and techniques that are most relevant to each of
the two steps.



2.1 Object Segmentation

To manipulate an object, a robot must be able to segment it out of a cluttered scene.
Indeed, image segmentation has been a focus for the computer vision community for
over three decades. In image segmentation, boundaries around image regions with con-
sistent properties are identified [S)]. Existing segmentation methods typically analyze
a single image, identifying discontinuities in color, brightness, texture, or depth [} 5],
with image regions computed by grouping pixels according to these properties. As
objects may be multi-colored, multi-textured, and possess internal depth discontinu-
ities, the regions computed by image segmentation methods rarely correspond to object
boundaries.

Manipulation provides a grounded semantics for segmentation: an image region
should correspond to a single rigid body. A rigid body is defined by the fact that
the distance between any two points on the body remains constant in time regardless
of external forces exerted on it. To effectively segment an unknown object we must
observe the object in motion. A new generation of interactive segmentation algorithms
leverages this insight that relative motion can greatly simplify image segmentation.
These algorithms [4} 9] rely on the robot’s body to generate motion, thereby revealing a
visual signal which can be analyzed to segment the moving rigid bodies. Our approach
also relies on interaction to solve the image segmentation problem.

2.2 Modeling Kinematic Constraints

The problem of acquiring kinematic models from sensor data is fundamental for au-
tonomous manipulation, yet only recently researchers have started to address this prob-
lem. Most existing approaches assume prior knowledge about the modeled object. Our
goal is manipulating unknown objects. Therefore, we focus on those methods that do
not require prior object models.

Yan and Pollefeys [16] rely on structure from motion to extract 3D feature trajec-
tories from a 2D camera, and then use spectral clustering to identify rigid bodies and
their kinematic relationship. This work assumes affine geometry of the scene and only
considers revolute joints. Ross et al. [[12] also rely on structure from motion, but use
maximum likelihood estimation to cluster features into rigid bodies. The strength of
these two algorithms is that they can handle bodies that undergo slight deformation
during motion. However, both approaches only handle revolute joints and make strong
assumptions to simplify the perception problem. They are computationally very expen-
sive and require large relative motions. Therefore, the above methods are not practical
for autonomous manipulation.

Katz et al. [6l 7] extract kinematic models of planar articulated objects. This work
relies on the insight discussed in section 2.1} deliberate interaction are used to gen-
erate relative motion, which in turn enables segmentation and joint detection. This
approach is relatively computationally efficient and can handle an arbitrary number of
rigid bodies and degrees of freedom, but is limited to planar objects.

Sturm et al. [13] [14]] learn models of kinematic joints from three-dimensional tra-
jectories of a moving plane. Motion is generated from deliberate interactions with the
environment. The strength of this approach is that it can model arbitrary joint types.



However, it requires that only a single rigid body is moving at a time. It is also limited
to objects that can be approximated as a moving plane, such as drawers and doors.

The above mentioned interactive perception approach [6} [7]] has recently been ex-
tended to handle 3D objects [8]. This approach applies to general articulated objects.
Similar to our approach, it requires that objects have sufficient texture for feature track-
ing. However, it relies on structure from motion, and therefore depends on large relative
motions. It is also prohibitively slow for autonomous manipulation, averaging 15 min-
utes per experiment, and, similar to all of the above, it does not handle occlusion during
interaction.

In contrast with the above methods, we propose an efficient solution that is prac-
tical for autonomous manipulation. In our experiments, the average runtime was 20
seconds, an order of magnitude faster than the performance of [8]]. Furthermore, our
method can model objects in the presence of occlusion during interaction—an impor-
tant property as interaction for perception is unlikely to be gentle and precise. Finally,
we acquires 3D measurements from the sensor. We do not need to reconstruct depth
from motion, and therefore require little motion to segment and model unknown objects

(Fig. ).

3 Perceiving Unknown Objects

Successful manipulation of an articulated object requires the perceptual capabilities to
detect and segment the object, model the kinematic constraints between its parts, and
track the configuration of the object over time. These perceptual capabilities cannot be
achieved from visual inspection alone, and would be extremely difficult to determine
by manipulation. We now describe a perceptual skill which combines interaction with
perception to achieve these capabilities.

The proposed skill is composed of three steps. The first step collects perceptual
information that provides the input to our algorithm. In this step, we initialize and track
visual features throughout the robot’s interactions with the environment. We offer two
complementary implementations for this step. The second step analyzes the trajectories
of these features, and computes a clustering of features and their trajectories into rigid
bodies. The third component of our algorithm determines the kinematic constraints
between pairs of rigid bodies.

4 Collecting Perceptual Information

The first step of our algorithm collects perceptual information. We rely on the robot’s
manipulation capabilities to create object motion. By physically causing objects to
move, the robot generates a strong perceptual signal for object segmentation. Here,
the robot’s motion is scripted. However, this restriction can be removed by learning
interaction strategies, as demonstrated by Katz et al. [7].

Once motion is induced, the robot collects perceptual information by tracking vi-
sual features using an RGB-D sensor. Thus, for every tracked feature, we have both
color and depth information. Our perceptual skill uses one of two types of visual fea-



tures and corresponding tracking algorithms. The first is the Lucas-Kanade (LK) fea-
ture tracker, using Shi-Tomasi corner features [[L1]. The second is based on matching
scale invariant SIFT features between key-frames [10].

The LK tracker assumes that brightness remains consistent between the same pixels
from one frame to the next, and that only small movements occur between frames. The
tracker estimates the velocity of a moving point feature by the ratio of the derivative
of the intensity over time divided by the derivative of the intensity over space, and the
resulting algorithm can track in real-time a large number of features. However, the LK
feature tracker poorly handles occlusion: if the robot’s arm blocks parts of the scene,
all features that are temporarily invisible are lost or become unreliable.

SIFT features [10] overcome this limitation of the LK tracker. These features de-
scribe interesting points in an image so as to be robust to changes in scale, noise,
and illumination enabling features to be matched between images despite significant
changes in position. Using SIFT features provides robustness against occlusion: a fea-
ture that cannot be found in a certain frame due to occlusion is not declared lost; it
may be detected in a later frame. Computing SIFT features descriptors and matching
across frames is significantly slower compared to the LK tracker, so our implemen-
tation matches SIFT features in a sparse sequence of images containing 10% of the
frames used by the LK tracker.

Throughout interaction with the environment our robot tracks a set of features.
The robot records the features’ images coordinates (u,v), 3D coordinates (x,y, z),
and color values (r, g, b) for each time ¢: f;(¢t) = {u,v,2,y, 2,7, g,b}. This process
of collecting perceptual information is identical, regardless of whether features are
generated by the LK tracker or SIFT matching.

Feature tracking is a simple operation. It only requires that the scene contains suf-
ficient texture to support visual tracking. It makes no assumption about the shape, size,
or color of objects, about their motion, or the motion of the camera. However, both
SIFT and LK feature tracking in unstructured scenes are highly unreliable. LK fea-
tures can jump between image regions, are lost, swapped, or drift along edges in the
image. And SIFT features can be wrongly paired. The next step of the algorithm will
automatically eliminate this noisy data, rendering the algorithm suitable for manipula-
tion in unstructured environments.

S Segmenting Rigid Bodies

The second step of our algorithm computes rigid-body segmentation. To segment an
unknown scene into rigid bodies, we leverage the fact that features associated with a
single rigid body often share similar spatial, temporal, and appearance characteristics.
Color and texture consistency over a spatially contiguous region may imply similarity
of material. The 3D distance between features indicates spatial proximity, and 3D
feature trajectories expose relative motion.

Although the 3D relative motion provides the strongest evidence to determine that
two features belong to the same rigid body, other cues are important for two principled
reasons. First, the relative motion may be small, as desired when manipulating an
unknown object. In particular, the trajectories of features that are close to an axis of



Figure 3: CD case; visual features marked as yellow, blue, and red circles. The relative
motion between the yellow and blue features is small. Additional cues such as texture
consistency and spatial proximity are necessary to improve segmentation.

rotation will be minimal (see Fig. E[) Also, we believe that the additional cues are
necessary for learning manipulation strategies from experience, ultimately enabling
segmentation without interaction [7].

All of these clues exploit the structure of the problem but by themselves are in-
sufficient to compute object segmentation. Our algorithm therefore integrates all these
clues to generate a combined object segmentation hypothesis. Segmentation hypothe-
ses are captured in a fully connected multi-graph G = (V, E). A vertex v € V cor-
responds to either an LK or a SIFT feature f; in the image and contains the feature
observations f;(t) = {u,v,,y, 2,7, ¢g,b}. The weight w(e; ;) of anedge ¢; ; € E is
a probability, indicating the belief that f;(t) and f;(¢) belong to the same rigid body.
We define three predictors, each considering the above clues. These predictors deter-
mine the probability that two features belong to the same rigid body. We assume that
the predictors are independent and combine their outcome using the Naive Bayes rule:
w(e; ;) = 11, Pe(fi, f;), where Py(fi, f;) is the probability computed by predictor
k. This graph representation is similar to [8]], however, our vertices are augmented
with 3D information. As a result, our algorithm relies on a smaller, more efficient and
reliable, set of predictors. In contrast with [8], our predictors have access to 3D mea-
surements, and therefore have a physical meaning (3D distance and motion), resulting
in improved segmentation performance (Fig. [5).

Relative 3D Motion Predictor: The distance between two features f; and f; that
belong to the same rigid body should remain approximately constant over time. The
relative motion predictor leverages this insight by computing §, the maximum change
in distance between f; and f; over time. If § is below a noise threshold of €1, we
conclude that f; and f; are likely to belong to the same rigid body. The probability
that f; and f; are connected decreases linearly, until 6 = €5, where we consider the
features disconnected.

L i 8(fi(2), f5(1) < e
Wy, = % ifer <(fi(t), f3(t) < e2

0 otherwise

3D Distance Predictor: If the distance between two features f; and f; is small,
they are more likely to belong to the same rigid body than to different bodies. The 3D
distance predictor leverages this heuristic. It computes a confidence value as a function



Figure 4: Illustration of the Color and Texture predictor.

of the distance J(f;, f;) between the features before and after the interaction.

1 if 6(fi(2), f;(t) < es
wig =4 5+ ST e < 0(fi(), £5(0) < e
3 otherwise

Color and Texture Predictor: The color and texture predictor exploits the fact
that image regions sharing similar color and texture are more likely to be part of the
same rigid body. It uses the mean-shift color segmentation algorithm to segment an
image into color-consistent regions (see Fig. ). It assumes that point features that are
in the same color region are more likely to be on the same rigid body. The predictor is
neutral towards features that are associated with different color and texture regions.

We note that the parameters €; = 0.5cm, €3 = 0.75cm, €3 = 2cm and €4 = 3cm
were chosen based on the precision of the RGB-D sensor. The probabilities set by each
predictor were chosen based on experience. In future work, we intend to learn these
parameters from labeled segmentations [15]].

To extract a rigid-body segmentation hypothesis from the resulting graph, we first
discard edges with weight zero. We rely on an efficient implementation of weighted
max-flow as described in [3] to recursively decompose the graph into strongly con-
nected components. The recursion terminates when decomposing a graph requires re-
moving more than half of its edges. Each of these components represents a rigid body.
Our algorithm therefore integrates clues about spatial proximity, color and texture sim-
ilarity, and relative motion to generate a rigid-body segmentation.

6 Detecting Kinematic Constraints

The last step of the algorithm determines the kinematic structure of an object. The
input to this step is a set of rigid bodies, each represented by a cluster of point features
and their trajectories. Our goal is to determine, for every pair of rigid bodies, whether
they are connected by a revolute joint, a prismatic joint, or are disconnected.

The kinematic relationship between a pair of rigid bodies is determined by their rel-
ative motion. Fig.[6(a)|and [6(b)|show the trajectories of two sets of point features, each
associated with one side of a checkerboard. Because the two bodies move together,
while also rotating with respect to each other, it is difficult to determine that they are



(a) Initial pose (b) Translation of lem (c) [8]’s Segmentation (d) Our Segmentation
(top) and 4cm (bottom)

Figure 5: Comparing our segmentation performance and [8]. Our method requires
smaller displacements, and therefore separates the board from the background after a
translation of only 1cm, compared to 4cm for [8].

connected by a revolute joint. Removing the common global motion, however, pro-
vides very clear evidence for the revolute joint (Fig. [6(c)).

To extract the relative motion between pairs of rigid bodies, we first compute the
relative homogeneous transformation ° Hy, for one rigid body between its initial pose at
time ¢( and its pose at every time ¢, along its trajectory. To handle measurement noise,
we find the optimal transformation by solving a least square minimization problem us-
ing singular value decomposition (SVD) [2]]. We obtain the relative motion trajectories
between the bodies by applying the transformations ° Hj, computed for the first body
to the feature trajectories of the second body (Fig. [6(c)).

The relative motion trajectories between two rigid bodies reveal their kinematic
relationship. If the bodies are connected by a prismatic joint, the relative motion will
have the form of straight, parallel lines of equal lengths. Our algorithm calculates
the lengths of all relative motion trajectories. If the lengths are approximately equal,
we use RANSAC line fitting, and calculate a fitness measure for each relative motion
trajectory. A good fit indicates a prismatic joint (Fig.[7).

If the prismatic fitness measure is low, we check whether the relative motion can
be explained by a revolute joint. Again, we use RANSAC, but this time to fit a circle
to each trajectory. We then fit a line through the centroids of these circles. If the line is
close to the majority of the centroids, the relative motion is due to a revolute joint, and
the line is its axis of rotation (Fig. . Otherwise, we declare the two bodies to be
disconnected. Fig. shows a complex motion between one side of the checkerboard
and the static background. As expected, the trajectories cannot be explained by a single
degree-of-freedom joint.



(c) Relative motion between the (d) Relative motion  board-
boards: revolute joint detected background:  declared discon-
nected

Figure 6: Feature trajectories for a checkerboard. The two sides of the board move
with respect to the background, and rotate with respect to each other.

Figure 7: Left: motion trajectories of a drawer. Right: successful RANSAC line fitting
to the relative motion.

7 Experimental Validation

We validate the proposed perceptual skill for segmenting, tracking, and modeling 3D
rigid articulated objects in 9 real-world experiments. Our goal is to demonstrate that
the robot can segment the target object and its rigid parts, track the position of each
rigid body over time, and identify the kinematic relationship between rigid bodies. We



will also show that our method applies whether interactions are created by the robot or
by a human teacher.

We conducted two types of experiments. In the first, our mobile manipulation
platform (Fig. 2)) interacted with 6 different real-world objects (see Fig. [8(a)). And in
the second, the robot observed, while a person interacted with 3 additional objects (see
Fig.[8(b)). The objects used in both types of experiments vary in scale, shape, color,
texture, and kinematic structure. A cheap off-the-shelf RGB-D sensor, the Microsoft
Kinect, provides the robot with 15 frames-per-second of color and depth information
with a resolution of 640 x 480 pixels. This sensor co-registers the color image with a
depth map.

Fig. [8(a)] shows 6 experiments in which interaction was generated by the robot.
The figure illustrates the performance of our algorithm in segmenting rigid bodies in
an unstructured scene and modeling the kinematic constraints between bodies. Each
row shows one object: a checkerboard, a stroller, a train, a book, a drawer, and a folder.
The first column shows the object before the interaction, the second shows the object
after the interaction, the third shows the clustering of the tracked features into rigid
bodies (edges of the graph are shown in white, clusters are color coded). And the last
column illustrates the joints detected between the rigid bodies (green lines). In the first
experiment, the robot interacts with a checkerboard by creating a motion between the
board and the background, as well as between the two parts of the board. The segmen-
tation into rigid bodies is accurate. Joint detection assigns high confidence values to a
disconnected joint between the background and the board. It also discovers the revo-
lute joint between the two parts of the board. Our algorithm works in this case because
it can detect and analyze any number of rigid bodies, even when moving simultane-
ously. The second experiment shows an interaction with a baby stroller. The robot
pushes the stroller along a straight line, creating a translation between the stroller and
the background. . The algorithm correctly segments the stroller from the background
and discovers a prismatic joint. More interaction with the stroller would reveal that
it is disconnected from the background. We note that the sensor’s resolution does not
allow feature tracking on the wheels, and therefore the wheels’ revolute joints are not
discovered. In the third experiment, the robot slides a Lego train along its tracks. The
train can only translate in its track, and therefore the robot segment the train from the
background, and correctly detects a prismatic joint. The fourth experiment shows an
interaction with a book. The robot only pushes one side of the book. Therefore, the
other side of the book is associated with the background (no relative motion), while
a revolute joint is detected between the moving side of the book and the background.
We note the slight offset in the joint’s position. This is due to some flexibility in the
spine of the book. Nevertheless, the acquired model is good enough for manipulating
the book. In the fifth experiment, the robot pushes a drawer. The algorithm segments
and tracks the drawer with respect to its background. It correctly identifies the drawer’s
prismatic joint. The sixth experiment shows an interaction with a document folder. The
robot pushes the folder, and interacts with the top part. As a result, three rigid bodies
are detected: the two parts of the folder, and the static background. A revolute joint is
identified between the parts of the folder. Due to flexibility at the joint, the observed
motion is only approximately a rotation. Thus, the position and orientation of the joint
are significantly offset. Future work should consider other types of joints. This exper-
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iment too demonstrates that our algorithm is able to detect and analyze any number of
rigid bodies, even when moving simultaneously.

Fig. shows 3 experiments in which interaction was generated by a human
teacher. The figure illustrates the performance of our algorithm in segmenting the
various rigid bodies and modeling the kinematic relationships. Each row shows one
object: a roll of paper-towel, a window, and an entire kitchen cabinet. Figures are
organized in columns showing: the object before the interaction, the object after the
interaction, the detected rigid bodies, and the detected joints.

The first experiment shows an interaction with a roll of paper-towel. Here, the
human teacher rotated the roll around a central metal axis. The algorithm correctly
segments the scene into two rigid bodies: the roll of paper-towel and the static back-
ground. It correctly identifies the revolute axis. In the second experiment, the human
demonstrator closes a sliding window. The algorithm correctly segments the scene into
two rigid bodies: background and moving window. It also detects the right kinematic
relationship: a prismatic joint. Our third experiment shows a complex interaction with
a kitchen cabinet. The demonstrator operates two drawers and a door. The different
motions overlap. Our perceptual skill correctly segments the scene into four rigid bod-
ies: background, top drawer, bottom drawer, and door. It identifies the prismatic joints
connecting the two drawers to the background, and a revolute joint between the door
and the background. It also determines that the drawers and the door are disconnected.
We note that the smooth motion of the door and the lack of flexibility in the mechanism
enables a very accurate detection of both position and orientation of all joints.

In all experiments, the proposed algorithm tracks the position of all features, and
therefore the position of each rigid body. In addition, the algorithm tracks the con-
figuration of the object. For a revolute joint, the configuration is the angle between
the relevant rigid bodies. For a prismatic joint, it is the translational displacement be-
tween the bodies. Fig. [T demonstrates the performance of our algorithm in tracking
the configuration of the revolute joint of the checker board.

In each experiment, the proposed algorithm detected, segmented, and tracked all
rigid bodies containing a sufficient number of visual features. The algorithm success-
fully obtained the kinematic structure in 9 out of 9 experiments. It detected the position
and orientation of the joint correctly in 8 cases. In the folder experiment, the detected
joint is offset due to inherent flexibility near the joint. Experiments were performed
under uncontrolled lighting conditions, different sensor positions and orientations, and
for arbitrary initial and final poses of the objects (see Fig.[9|and[TI0). The demonstrated
robustness, effectiveness and repeatability provide evidence that this perceptual skill
is suitable for manipulation in unstructured environments. The skill also transparently
allows for learning from demonstration, an important feature for manipulation in hu-
man environments. We do not have ground truth information for the kinematic models
of the above objects and therefore rely on visual inspection to judge the effectiveness
of our method. Ultimately, we will combine the proposed perceptual skill with ma-
nipulation skills, which will allow us to determine whether the accuracy of our skill is
sufficient to enable autonomous manipulation of unknown objects. However, given the
above results we are confident that this is the case.

The greatest limitation of the our algorithm is its dependency on the presence of
trackable visual features. A higher-resolution sensor would reduce this dependency.
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We are also actively working towards the development of visual features that do not
dependent so strongly on texture.

The runtime of all three steps of the algorithm depends on the number of tracked
features as well as the number of rigid bodies in the scene. In our experiments, scenes
were composed of 2-4 rigid bodies. When using LK features, the algorithm initially
attempts to locate 500 features. In most cases, about half of the features are lost during
tracking or discarded because depth information is missing. When using SIFT features,
the algorithm is usually able to detect about 100 features in multiple frames. The
runtime of the algorithm averaged 20 seconds, a 15-30 times improvement compared
to the state-of-the-art approach [8].

8 Conclusion

We presented a perceptual skill for manipulation in unstructured environments. This
skill enables autonomous segmentation, tracking, and modeling of 3D articulated ob-
jects. This ability is a prerequisite for purposeful manipulation. It enables a robot to
monitor the progress of a manipulation task, detect its completion and identify failures.
To achieve this, we rely on interaction with the environment to excite the explored de-
grees of freedom. This interaction can be performed by the robot or by human teacher.
The proposed skill analyzes the outcome of the interaction to determines the shape,
configuration, and kinematic model of the observed objects.

Our experiments showed the successful acquisition of 3D kinematic models of 9
real-world objects. The robot requires no prior knowledge of the objects. The resulting
kinematic models were accurate, even in the presence of substantial noise in tracking
due to the low resolution of the Kinect. The algorithm is also robust against small
object deformations and joint flexibility. The skill only depends on a sufficient number
of trackable features on each of the rigid objects in the scene, and on the ability to
generate motion.

First, its run time is only a few seconds. Second, it allows for occlusions during the
interaction. Third, it requires very small object motions—an important property when
interacting with unknown objects. And most importantly, it makes no assumptions
about the shape and kinematic structure of objects.

Our algorithm has four important advantages compared to the state of the art: its
run time is over an order of magnitude faster, it can handle occlusions during the in-
teraction, it requires very small object motions, and it makes no assumptions about the
shape and kinematic structure of objects.
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Figure 8: Experimental results showing the process of segmenting rigid bod-
ies and detecting degrees of freedom in a scene. Interactions are generated by
the robot in [B(a) and by a human teacher in B(b) Left to Right: the ob-
ject before the interaction; the object after the interaction; the results of seg-
menting the graph of tracked features into clusters of features on the same
rigid body; the detected joints (marked in green). Videos are available at
http://www.youtube.com/playlist?list=PLBB08C0290B79905C
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Trial

Figure 9: To demonstrate repeatability we conducted experiments with two objects:
door and drawer. Each experiment was repeated 10 times, while changing lighting,
sensor position and orientation, and initial and final object configuration. Three exam-
ples of the detected joint (marked in green) are shown for each object. The plots show
the angle between the detected axis and the floor. Door: mean = 88.43°, std. dev. =
0.016, Drawer: mean = 177.3°, std.dev. 0.94. Results are close to expectations (90°
and 180°). The difference (< 3°) is due to misalignment of the sensor with the floor.
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Figure 10: We performed 10 experiments with a door and 10 with a drawer under
varying lighting conditions, sensor position and orientation, and object initial and final
configuration. Segmentation results are consistent and repeatable.
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Figure 11: Tracking the configuration of a checkerboard: the robot translates the object,
rotates the right-half, then rotates it back. The plot shows the resulting change in
configuration.
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