
Learning to Manipulate Articulated Objects in Unstructured
Environments Using a Grounded Relational Representation

Dov Katz Yuri Pyuro Oliver Brock
Robotics and Biology Laboratory

University of Massachusetts Amherst

Abstract— We introduce a learning-based approach to manip-
ulation in unstructured environments. This approach permits au-
tonomous acquisition of manipulation expertise from interactions
with the environment. The resulting expertise enables a robot to
perform effective manipulation based on partial state informa-
tion. The manipulation expertise is represented in a relational
state representation and learned using relational reinforcement
learning. The relational representation renders learning tractable
by collapsing a large number of states onto a single, relational
state. The relational state representation is carefully grounded in
the perceptual and interaction skills of the robot. This ensures
that symbolically learned knowledge remains meaningful in the
physical world. We experimentally validate the proposed learning
approach on the task of manipulating an articulated object to
obtain a model of its kinematic structure. Our experiments
demonstrate that the manipulation expertise acquired by the
robot leads to substantial performance improvements. These
improvements are maintained when experience is applied to
previously unseen objects.

I. INTRODUCTION

Autonomous manipulation remains one of the great chal-
lenges in robotics. The successful endowment of autonomous
robots with robust manipulation skills will have substantial
impact in many important application areas, ranging from
personal and professional service robotics to flexible manu-
facturing and planetary exploration.

We view autonomous manipulation as the purposeful and
deliberate change of the configuration of an object. The
object’s configuration uniquely describes the object’s pose
by specifying every degree of freedom of the object. An
object can have extrinsic and intrinsic degrees of freedom.
Extrinsic degrees of freedom describe the spatial relationship
between the object and its environment. Intrinsic degrees of
freedom describe the relationship among the rigid bodies of
an articulated object and are often relevant to the object’s
intended function. Examples of objects with intrinsic degrees
of freedom include tools (scissors, pliers, etc.), doors, door
handles, books, or drawers. Successful manipulation must be
informed by knowledge of the extrinsic and intrinsic degrees
of freedom of an object.

In unstructured environments, a robot cannot rely on a
detailed and accurate a priori model of the environment. It
must therefore be able to acquire task-relevant information
to inform its interactions with the objects in the environ-
ment. Based on this information, the robot must adapt its
manipulation behavior to ensure successful task execution.
Manipulation becomes a continuous and interactive process of

Fig. 1. UMan (UMass Mobile Manipulator) interacts with an articulated
object to acquire information about the object’s kinematic structure. The right
image shows the scene as seen by the robot through an overhead camera; dots
mark tracked visual features.

acquiring information about the environment and subsequently
adapting the interaction with the environment in response to
this information.

The contribution of this paper is a learning-based approach
to manipulation in unstructured environments. This approach
permits the robot to autonomously acquire manipulation exper-
tise from its interactions with the environment. The resulting
expertise enables the robot to select the most effective manip-
ulation action based on partial state information. The manip-
ulation expertise is learned in a relational state representation.
This representation is essential, as it renders learning tractable
by collapsing a large regions of the state space onto a single,
task-relevant, relational state. The symbolic representation is
carefully grounded in the perceptual and interaction skills of
the robot to ensure that relationally learned knowledge remains
applicable in the physical world.

Using this learning-based manipulation approach, we show
how a robot can autonomously learn manipulation strategies
to obtain a kinematic model of unknown articulated objects.
The robot physically interacts with the object by pushing
or pulling it and observes the object’s motion (see Fig. 1).
As these interactions create a change in the configuration
of the object, the robot incrementally discovers the object’s
intrinsic and extrinsic degrees of freedom. The robot learns
to select interactions that are most likely to reveal the maxi-
mum information about the kinematic structure. The acquired
manipulation knowledge substantially reduces the number of
interactions required to obtain an accurate kinematic model.
Furthermore, the manipulation knowledge acquired with one
object transfers to other objects, even if they have different
kinematic structures.



In the following section we introduce the relational repre-
sentations of kinematic structures that forms the basis of our
learning-based approach to manipulation. We then describe
how this representation can be grounded using the percep-
tual and interaction capabilities of the robot. We proceed
to discuss the relational learning framework and how it can
be grounded with respect to the relational representation.
Finally, we demonstrate the effectiveness of our approach in
manipulation experiments with articulated objects.

II. RELATED WORK

We distinguish between three categories of approaches to
manipulation [2, 15, 17]. The first category pertains to manip-
ulation planning. Approaches in this category assume that an
accurate geometric model of the manipulated object is avail-
able and devise manipulation plans based on this model. These
manipulation planners address various flavors of manipulation,
including grasping and in-hand manipulation [24], manipula-
tion with sliding contacts [26], non-prehensile manipulation [1,
14], and gross motion planning for manipulation [21]. In
contrast to these approaches, we focus on problems for which
accurate models are not available.

The second category uses feedback control to achieve
manipulation. Particularly relevant are approaches that use
learning to design controllers [28]. These methods alleviate
the difficulties that analytical methods for controller design
encounter in the presence of modeling errors for systems
with complex kinematics and dynamics. A different approach
to learning-based controller design relies on memory-based
learning [16]. Controllers can also be designed by searching
in configuration space [22]. All methods in this category
determine specific controllers that can serve to ground a
relational state representation such as the one we use.

Whereas approaches in the previous category are concerned
with individual controllers, approaches in the third category
sequence [3, 18] or compose [20] multiple controllers to
generate more complex manipulation behaviors. Composite
controllers can be arranged into state transition diagrams to
further increase robustness and versatility [19]. Most often,
the necessary state transition diagrams are designed by the
programmer, but they can also be learned using reinforcement
learning [9]. Again, we view the resulting controllers as
candidates to ground a relational state representation.

There are many other approaches that address aspects of ma-
nipulation but cannot easily be assigned to one of these three
categories. We will discuss several with particular relevance to
the work presented here. Christiansen et al. [4] learn manip-
ulation strategies for a tray-tilting task in conjunction with a
dynamic model of the domain. Edsinger and Kemp emphasize
the importance of task-specific perceptual features that exploit
common structural features of functionally related objects to
facilitate manipulation in human environments [8]. Stoytchev
presents an approach to learn tool affordances for robotic
tool use [23]. He emphasizes the importance of grounding
this representation in the robot’s behavioral repertoire. This
enables the immediate application of the robot’s accumulated

experience. In our work, we combine task-specificity for
perception and grounding for action by requiring that an
adequate grounding of our relational state representation has
to rely on task-specific perception and task-specific behaviors.

III. RELATIONAL REPRESENTATION

The relational representation is critical to the success of
our learning-based approach to manipulation. Using a finite
set of relations, we are able to describe an infinite number
of states and actions. It thus becomes possible to represent
and reason about situations that a propositional represen-
tation cannot handle. For example, a robot may encounter
many types of scissors, varying in color, shape, and size.
All scissors, however, have the same kinematic structure. A
single relational formula can capture the kinematic structure
of all scissors, irrespective of their other properties. Therefore,
a single relational action can be applied to all objects. In
contrast, a propositional representation would have to include
a proposition for every encountered object and one for every
action applicable to this object. The relational representation
avoids this combinatorial explosion of actions and states, thus
greatly reducing the state space and making learning possible.

Fig. 2. Two examples of kinematic structures: scissors with a single revolute
joint and a wooden toy with a prismatic joint and two revolute joints.

Our relational representation for kinematic models of ar-
ticulated objects captures joint types, link properties, and
kinematic relationships between links. Figure 2 shows two
examples of planar kinematic structures. The scissors have a
single revolute degree of freedom and the wooden toy is a
serial kinematic chain with a prismatic joint (on the left of the
figure) and two revolute joints. Our relational representation
uses predicates R(·), P (·), and D(·) to describe that rigid
bodies are connected by a revolute joint, a prismatic joint, or
are disconnected, respectively. The predicates are n-ary, with
n ≥ 2, to capture branching kinematic structures. The rigid
body passed as the first argument to the relation is the one in
relationship with all other arguments. For example, R(x, y, z)
is equivalent to R(x, y) ∧R(x, z).

Using these relations, we can represent the kinematic struc-
ture of the scissors as

D(lb, R(l1, l2)),

where l1 and l2 represent the two links of the scissors and lb
is a disconnected background link. The kinematic structure of
the wooden toy can be represented as

D(lb, R(l4, R(l3, P (l1, l2)))).



Note that this representation is not unique. The wooden toy
could also be represented as

D(P (l4, R(R(l1, l2), l3)), lb).

Which of these representations is used by the robot depends
on the order of discovery of the links. The most deeply nested
relation is discovered first.

Kinematic loops are represented by using the same link
twice. A 5R kinematic loop is described by:

D(lb, R(l1, R(l5, R(l4, R(l3, R(l2, l1)))))).

By extending our atomic representation of links to m-ary
relations L(·), m ≥ 1, we can include link properties in our
description of kinematic chains. In this paper we will limit
ourselves to a single property, namely the size of the link.
The wooden toy can now be represented as

D(lb, R(L(s, f4), R(L(s, f3), P (L(s, f1), L(s, f2))))),

where s stands for the property small and the fi spatially iden-
tify links in the physical world (see section IV). The extension
to an arbitrary number of link properties is straightforward.

With this relational representation of kinematic structures,
it becomes possible to reason and learn about objects based
on their kinematic structure. All experience acquired by ma-
nipulating scissors can be applied to all other scissors, as
long as they have an identical kinematic structure. If specific
properties of the links of an object affect the desired manipu-
lation behavior, we can add these properties to the relational
description of the links. Our representation is then able to
differentiate between identical kinematic structures based on
link properties. All properties irrelevant to manipulation are
ignored during learning. This reduction in state space makes
the learning problem considerably easier.

We also use a relational representation for the actions
performed by the robot. Actions apply pushing or pulling
forces to one of the links. The forces can be applied along the
major axes of the link or along a forty-five degree angle to
the major axes. An action is represented as A(L(·), α), where
L(·) represents a link and alpha is an atom describing one of
the possible six pushing/pulling directions relative to the link.

IV. GROUNDING THE RELATIONAL REPRESENTATION

The relational representation described in the previous sec-
tion can only support the learning of manipulation knowledge
if it is grounded in the physical capabilities of the robot.
Grounding bridges between the symbols of our representation
and the physical, continuous world [10]. Grounding ensures
that we can symbolically interpret the observations made by
the robot in regards to its interactions with the world. At
the same time, grounding ensures that the resulting symbolic
manipulation knowledge maintains its relevance and predictive
power for the robot’s real-world interactions.

To ground our relational representation, we bind the rela-
tions R(·, ·), P (·, ·), and D(·, ·) as well as the link properties
to real-world perceptual capabilities of the robot.

In prior work we developed a skill for the robust perception
of kinematic degrees of freedom and link properties of planar
articulated objects [12]. Figure 1 shows a real-world interactive
experiment with garden shears. The robot interacts with the
shears to determine the location of the revolute joint and the
spatial extent of the links. The image on the right shows
the robot’s view of its own interaction with the shears. Dots
indicate tracked visual features.

This skill provides adequate grounding for our relational
representation of links and their kinematic relationship. It
extracts the degrees of freedom of an object by tracking the
motion of the visual features in the scene. Tracked features
are clustered into links using a graph representation in which
the features correspond to vertices. Two vertices are connected
by an edge if the relative distance of the corresponding visual
features does not change throughout the interaction with the
object. By clustering the features, it is possible to identify
the spatial location and extent of the links. The features
associated with a single link are grouped into the sets fi (see
previous section). The relationship between different clusters
(links) in the graph can be analyzed to reveal their kinematic
relationship.

The robustness of this skill has been proven in dozens
of real-world experiments. The skill does not require prior
knowledge of the object, is insensitive to lighting conditions
and specularities, succeeds irrespective of the texture and color
of the object’s parts, works reliably even with low-quality
cameras, and at the same time is computationally efficient. As
a consequence, it is ideally suited for the grounding of our rela-
tional representations of kinematic structures for unstructured
environments. For a detailed description of this interactive
perception skill the reader is referred to reference [12].

V. LEARNING MANIPULATION WITH GROUNDED
RELATIONAL REINFORCEMENT LEARNING

The grounded relational description of states is the basis
for our learning framework. To learn manipulation knowledge
from interactions with the environment, we cast the incremen-
tal acquisition of kinematic representations of objects as a
relational reinforcement learning [7, 25, 27] problem.

In reinforcement learning, an agent learns an optimal policy
for solving a task. This policy tells the robot which action
to perform in a particular state. The robot acquires the pol-
icy incrementally, by performing experiments. In our case,
an experiment consists of the robot pushing an object. For
every action, the robot receives a reward. In our experiments,
the robot receives a reward for every degree of freedom it
discovers. Over the course of multiple experiments, the robot
incorporates new experiences into its policy. As a result, our
robot learns an effective policy for acquiring kinematic models
of articulated objects.

We formalize this problem as a Relational Markov Decision
Process (RMDP) [27] and then apply Q-learning [29] to find
an optimal policy. A Markov Decision Process (MDP) is
a tuple M = (S, A, T,R), where S designates the set of
possible states, A is the set of actions available to the robot,



T : S × A → Π(S) specifies a state transition function to
determine a probability distribution Π(S) over S, indicating
the probability of attaining a successor state when an action is
performed in an initial state, and R : S×A→ R is a function
to determine the reward obtained by taking a particular action
in a particular state. In our case, the description of states and
actions is relational and therefore we have a relational MPD.

The relational description of states and actions of the RMDP
was presented in Section III. We now describe the remaining
components of the RMDP and how Q-learning is employed
to determine an optimal policy π for manipulating articulated
objects in unstructured environments.

A. Transition Function

The transition function captures the state transitions that
occur in the physical world when an action is applied. We
never explicitly represent this function. Instead, we rely on the
real world and on our perceptual capabilities to determine the
new state after the application of an action has been completed.

B. Reward Function

The reward function R : S ×A→ Z returns the number of
links and joints that were discovered by performing an action
in a particular state.

C. Q-Learning

Q-learning [29] determines a policy π : S → A for selecting
actions based on the current state. To determine this policy,
our goal is to learn the Q-value function Q : S × A → R
by performing a series of experiments, each of which reveals
how much reward a particular action can obtain in a particular
state. The Q-value function accumulates information about the
total expected reward for an entire trial. The policy defined by
the Q-value function is given by π(s) = arg maxa Q(s, a).

As the robot performs actions in its environment and
receives the resulting rewards, the Q function is updated
according to the following rule:

Q(st, at) = (1−α) Q(st, at)+α
(
rr+1 + γ max

a
Q(st+1, a)

)
,

where α is the learning rate, γ is the discount factor, and rt

is the reward received at time t.

D. Representation of Q-Value Function

Q-learning requires an adequate representation for the Q-
value function. In our case, this representation is instance-
based [6]. The robot stores each of its experiences as a tuple
of state, action, and the Q-value obtained when performing the
action in that state. Because states and actions are relational
and stored uninstantiated, every stored experience is applicable
to a possibly infinite number of situations.

Given the current state, the robot has to retrieve estimates of
Q-values for actions from its experience. This is particularly
important when the robot has not previously visited the current
state. By doing so, the robot is able to leverage relevant prior
experience in a new situation, thereby improving its learning
performance.

To identify the experience most relevant to a state, we need
a similarity measure for states. Similarity is affected by the
state’s kinematic structure and by the properties of the links in
that structure. Neither of these aspects have to match perfectly
for the robot to retrieve relevant experience. We first describe
how unification is used to match properties of individual links
between the kinematic structure of the current state and the
state stored in the Q-value function. We then explain how
similarity between kinematic structures can be identified.

Let us assume the robot at time t has uncovered the
existence of three links (large, small, large), connected into
a serial chain by revolute joints; the corresponding relational
state description is

st = R(R(L(l, f1), L(s, f2)), L(l, f3)),

ignoring the background for simplicity. Further assume that the
Q-value function representation contains a single experience
with a structure/action/reward tuple

(s, a, r) = (R(R(L(s, v1), L(s, v2)), L(s, v3)), A(v3, 45◦), 1.6) .

The state s represents a serial chain with two revolute joints
and three small links. Note that the Q-value function does not
store the sets of features fi for each link but instead includes a
variable vi. This variable can now be instantiated by unifying
the memorized state s with the current state representation
st. Due to the different instantiation of link size, however,
unification fails in this case. We can still retrieve somewhat
less relevant experience by ignoring the link size. The resulting
unification leads to a binding of v3 ← f3. This instantiates
the action to A(f3, 45◦), telling the robot to push on the link
described by the visual features in f3 from 45◦ angle relative
to the principal axes of the feature set.

This example illustrated how the unification process pro-
gressively ignores the least discriminative property of links
until unification succeeds. We now explain how similar kine-
matic structures can be mapped onto each other to retrieve
relevant experience.

We saw in Section III that the relational representation of
kinematic structures is not unique. State st, for example, is
equivalent to R(L(l, f3), R(L(s, f2), L(l, f3))). We would like
to retrieve relevant experience in the presence of this ambi-
guity. Furthermore, for a state st = R(L(l, f1), L(l, f2)) we
would like to be able to leverage our experience by realizing
that L(l, f1) in st could represent R(L(l, f1), L(s, f2)) in s
before the additional degree of freedom was discovered.

To identify closely related kinematic structures, we repre-
sent a relational state as an undirected, labeled graph G =
(V,E). A vertex v ∈ V corresponds to a link. An edge e ∈ E
is labeled as either prismatic or revolute, corresponding to the
kinematic relationship between two links.

This graph representation naturally supports the desired
ability to retrieve relevant experience from the Q-value func-
tion, even for structure-preserving re-orderings of the rela-
tional representation as well as for super or sub-structures of
the current state. Given two graphs Gt and G corresponding
to st and s, we check for graph isomorphism to find exact



structural matches and sub-matches, even when the relational
descriptions of the underlying structure vary. To determine par-
tial matches, we check for subgraph monomorphism between
Gt and G. In contrast to subgraph isomorphism, which is a
bijection, subgraph monomorphism is an injection, thus the
match is one-to-one but not onto.

When one or multiple graph matches exist, the robot re-
trieves the experience associated with the closest match. When
no graph match can be established or the action stored with
the matching state cannot be instantiated based on the match,
the robot is unable to retrieve relevant experience from the
Q-value function.

Each time the robot performs an action and receives a
reward, we store this experience in the instance-based Q-value
function. If an exact graph match exists between the current
state and a previously encountered state (graph isomorphism),
we update the existing memory entry with the new experience.
Otherwise, we add this experience as a new instance to the
representation of the Q-value function.

Subgraph monomorphism is an NP-complete problem.
However, efficient algorithms for small graphs exist [5]. Since
most real-world articulated objects posses a small number
of links, the theoretical computational complexity does not
impose any practical limitations on our approach.

Similar to other memory-based approaches to learning, our
approach may require large amounts of memory. Several meth-
ods to remedy this problem have been proposed, specifically
in the context of relational reinforcement learning [6]. We
believe that the consolidation of experiences based on domain-
specific generalization is an important issue for future research.
Ultimately, we expect to apply unification and graph matching
to the obtained experience in order to generate general manip-
ulation rules, greatly reducing the memory requirement of our
instance-based representation for the Q-value function.

E. Action Selection: Balancing Exploration and Exploitation

To learn an optimal policy, the robot has to balance explo-
ration and exploitation. Exploration refers to the execution of
an action to improve the Q-value function’s estimate of the
associated reward. Exploitation, in contrast, refers to action
selection based on maximizing reward. If the robot explores
too much, it will learn slowly. If it exploits too early, it will
perform poorly because it has not gathered enough experience.
We complete the description of our approach by explaining
how action selection during learning balances exploration and
exploitation.

When selecting an action for the current state, the robot can
either perform exploration by selecting a new action, or it can
use its experience with previously performed actions. In the
latter case, the robot again chooses between exploration and
exploitation. It can either perform exploitation by choosing
the most promising action based on its current estimates of
Q-values, or perform exploration in an attempt to improve the
current estimates of Q-values.

To decide if a new action should be executed (the first
trade-off), we compute the fraction φ of actions for which

the robot already has gathered experience. If a number drawn
uniformly at random from the interval [0, 1] is smaller than
e−βφ, the robot performs exploration (β = 2 in our exper-
iments). Otherwise it selects one of the actions associated
with state s. The selection among those actions represents
the second trade-off. We perform it using Interval Estimation
(IE) [11]. Intuitively, IE picks the action that still has the
highest potential to perform well. More advanced alternatives
to IE guarantee polynomial bounds on the resources required
to achieve near-optimal return [13].

VI. GROUNDING RELATIONAL REINFORCEMENT
LEARNING

The learning framework described in this paper is entirely
symbolic. To ground this framework, we have to link updates
to relational state descriptions to the perceptual capabilities of
the robot and actions performed by the robot to the relational
description of actions in the learning framework.

The state description is grounded using the perceptual skill
described in Section IV. When the perceptual discovers a new
link, observes internal motion of a link, or observes a different
kinematic relationship than the one represented in the state, the
relational state representation is updated. The state description
is also updated when new properties of links are perceived.

An action is grounded using the set of visual features fi

in the robot’s perceptual space. The relational action can be
translated into a force-controlled physical action that estab-
lishes contact with the table on the appropriate side of the point
cloud and then performs a compliant motion until contact with
the object is made and the desired motion is observed.

The task-specific grounding of state updates and the action
executions closes the loop between the physical world and the
learning framework. It ensures that the learned manipulation
experience is physically meaningful and can be translated back
into a useful physical action.

VII. EXPERIMENTAL VALIDATION

To demonstrate the effectiveness of our learning-based
approach to manipulation in unstructured environments, we
perform two types of experiments. First, we show that our
approach permits the learning of manipulation knowledge from
experience. Second, we show that the acquired experiences
transfer to previously unseen objects.

A. Experimental Setup

Our experimental evaluation requires a large number of
experiments. For practical reasons, we performed these ex-
periments in a simulated environment. Due to the robustness
of the perceptual skill described in Section IV and due
to the simplicity of force guided pushing required for our
experiments, we argue that our results remain valid in real-
world experiments. Our simulation environment is based on
the Open Dynamics Engine (ODE), a dynamics simulator. The
simulation includes gravity, friction, and non-determinacy.

In each experiment, the robot interacts with an articulated
object to extract its kinematic structure. Example objects are



given in Figures 3 and 4. Revolute joints are shown as red
cylinders, prismatic joints are represented by green boxes, and
links are shown in blue. Currently, our approach is limited
to planar objects. We also restrict our experimentation to
serial chains, even though our implementation handles branch-
ing mechanisms and loops. Perceptual information about the
manipulated objects is obtained from a simulation of the
perceptual skill described in Section IV [12]. We do not use the
simulator’s internal object representation to obtain information
of the object.

Each experiment consists of a sequence trials. For each trial
we report the average over 10 independent experiments. A
trial consists of a number of steps; in each step, the robot
applies a pushing action to the the articulated object. The trial
ends when an external observer signals that the obtained model
accurately reflects the kinematic structure of the articulated
object. The number of steps required to uncover the correct
kinematic structure measures the effectiveness with which the
robot accomplishes the task.

Each step of a trial can be divided into three phases. In
the first phase, the robot selects an action and a link with
which it wants to interact. The action is instantiated using the
current state and the experience stored in the representation of
the Q-value function. In the second phase, the selected action
is applied to the link, and the ODE simulator generates the
resulting object motion. The trajectories of the visual features
tracked by the perception skill are reported to the robot. In the
last phase, the robot analyzes the motion of visual features
and determines the kinematic properties of the rigid bodies
observed so far. These properties are then incorporated into
the robot’s current state representation. With each step, the
robot accumulates manipulation experiences that improves its
performance over time.

A trial ends when the kinematic model obtained by the robot
corresponds to the structure of the articulated object. In our
simulation experiments, an external supervisor issues a special
reward signal to end the particular trial. Note that such a super-
visor is not required for real-world experiments. The robot can
decide to perform manipulation based on incomplete available
information. If new kinematic information is discovered during
manipulation, the robot simply updates its kinematic model
and revises its manipulation strategy accordingly.

B. Learning Manipulation Knowledge

To demonstrate the ability of the proposed learning frame-
work to acquire relevant manipulation knowledge, we observe
the number of actions required to discover a kinematic struc-
ture. We compare the performance of the proposed grounded
relational reinforcement learning approach to a random action
selection strategy, using an object with seven degrees of
freedom and eight links (Fig. 3(a)). The resulting learning
curve is shown in Figure 3(b). Random action selection,
as to be expected, does not improve its performance with
additional trials. In contrast, action selection based on the
proposed relational reinforcement learning approach results in
a substantial reduction of the number of actions required to

correctly identify the kinematic structure. This improvement
already becomes apparent after about 20 trials. Using the
learning-based strategy, an average of 8 pushing actions is
required to extract the complete kinematic model, compared
to the approximately 20 pushing actions required with random
action selection. This corresponds to an improvement of 60%.

This first experiment demonstrates that our approach to
manipulation enables robots to acquire manipulation knowl-
edge and to apply this knowledge to improve manipulation
performance.

(a) Articulated object
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Fig. 3. Experiments with a planar kinematic structure with seven degrees of
freedom (RPRPRPR, R = revolute, P = prismatic). The learning curve for our
learning-based approach to manipulation (green solid line) converges to eight
required actions with a decreasing variance, representing an improvement of
60% over the random strategy (blue dashed line).

C. Transferring Manipulation Knowledge

To demonstrate that the manipulation experience acquired
with one object transfers to other objects, we observe the
number of actions required to discover a kinematic structure
with and without prior experience.

In the first transfer experiment, the robot gathers experience
with an articulated object with 5 degrees of freedom (see
Fig. 4(a)). After 50 trials, the robot is given a more complex
object with two additional degrees of freedom. The simple
structure is a sub-structure of the more complex one. We
compare the robot’s performance with that of a robot without
prior experience (see Fig. 4(a)). The robot with prior experi-
ence consistently outperforms the robot without experience.
Over the first ten trials, this performance improvement is
approximately 20%. In trials 10 to 40, the performance im-
provement is much smaller. Interestingly, as variance decreases
(the robot decreases its exploration rate), the performance of
the robot with experience again achieves a 20% performance
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(a) Learning curves for a robot with experience manipulating the PRPRP object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a more complex object (PRPRPRP, middle). Experience improves performance by 20%.
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(b) Learning curves for a robot with experience manipulating the RRRRR object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a simpler object (RRRR, middle). Experience leads to nearly immediate convergence.
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(c) Learning curves for a robot with experience manipulating the PRRRRP object on the left (solid green line) compared to an inexperienced robot (dashed
blue line). Both robots learn to acquire the kinematic structure of a simpler object (PRRP, middle). The simpler object is not a sub-structure of the complex
object. With experience, convergence is achieved in about five trials.

Fig. 4. Experimental validation of transfer of manipulation experience between different articulated objects.

improvement. We attribute this to the fact that some useful
manipulation strategies can more easily be discovered in the
smaller state space of the simpler structure.

In the second experiment, the robot learns to manipulate
a complex articulated object with 5 revolute joints. After 50
trials, the robot is given a slightly simpler structure that only
possesses four revolute joints. Again, the simpler structure is
a sub-structure of the more complex one. We compare the
robot’s performance after these initial 50 trials to another
robot’s performance without prior experience (see Fig. 4(b)).

Given prior experience, the robot achieves convergence almost
immediately. This corresponds to a performance improvement
of about 50% in the first trial, relative to the robot without
experience. After about ten trials, both robots converge to
approximately the same performance, which is to be expected
for simple structures that exclusively consist of revolute joints.

In the third experiment, the robot learns to manipulate an
articulated object with 6 degrees of freedom (see Fig. 4(c)).
After 50 trials, the robot is given a different structure that
is not a substructure of the other. We compare the robot’s



performance after these initial 50 trials to another robot’s
performance without prior experience (see Fig. 4(c)). Again,
experience results in a much faster convergence (after only five
trials) towards about five required interactions. In addition, the
variance of successive trials is reduced. After about 15 trials,
both robots converge towards the same number of interactions.

Our experimental results provide strong evidence that learn-
ing from past experience can significantly improve manip-
ulation performance. We attribute the effectiveness of our
approach leverages to the proper, task-specific grounding of
our relational representation.

VIII. CONCLUSION

We proposed a learning-based approach for manipulation in
unstructured environments. We provide experimental evidence
that this approach enables robots to autonomously acquire
manipulation expertise by interacting with the environment.
This expertise transfers across different instances of the ma-
nipulation task and substantially improves manipulation per-
formance.

Learning and generalization of manipulation knowledge
becomes possible due to a relational representation of states
and actions. This representation reduces the state space and
renders relational reinforcement learning tractable, even in
complex manipulation domains. The power of this symbolic
representation is leveraged in the real world through careful
grounding of the symbols in the robot’s perceptual and inter-
active capabilities.

We validate the proposed approach in the context of
extracting kinematic models of articulated objects. This is
an important enabling skill for general manipulation in un-
structured environments, as all manipulation tasks require a
deliberate and purposeful change in the configuration of an
object and therefore knowledge of the kinematic model of an
object. We demonstrate that grounded relational reinforcement
learning substantially improves the robot’s performance in
this task. Our experiments show that appropriately grounded
relational reinforcement learning is a promising approach
towards endowing robots with manipulation skills adequate
for unstructured environments.
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