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Abstract— We introduce Interactive Perception as a new
perceptual paradigm for autonomous robotics in unstructured
environments. Interactive perception augments the process of
perception with physical interactions, thus integrating robotics
and computer vision. By integrating interactions into the
perceptual process, it is possible to manipulate the environment
so as to uncover information relevant for the robust and
reliable execution of a task. Examples of such interactions
include the removal of obstructions or object repositioning
to improve lighting conditions. More importantly, forceful
interaction can uncover perceptual information that would
otherwise be imperceivable. In this paper, we begin to explore
the potential of the interactive perception paradigm. We present
an interactive perceptual primitive that extracts kinematic
models from objects in the environment. Many objects in
everyday environments, such as doors, drawers, and hand tools,
contain inherent kinematic degrees of freedom. Knowledge of
these degrees of freedom is required to use the objects in their
intended manner. We demonstrate how a robot is capable of
extracting a kinematic model from a variety of tools, using very
simple algorithms. We then show how the robot can use the
resulting kinematic model to operate the tool. The simplicity
of these algorithms and their effectiveness in our experiments
indicate that Interactive Perception is a promising perceptual
paradigm for autonomous robotics.

I. INTRODUCTION

Roboticists are working towards the deployment of au-
tonomous robots in unstructured and dynamic environments.
Adequate autonomy and competency in such environments
would open up a variety of important applications for
robotics, ranging from planetary exploration to elder care and
from the disposal of improvised explosive devices to flexible
manufacturing and construction in collaboration with human
experts. For these applications, it is not possible to provide
detailed a priori models of the environment. The ability to
efficiently acquire and iteratively improve such models from
perception is thus an essential prerequisite for autonomous
operation in unstructured environments.

Perceptual techniques, in particular in the domain of
computer vision, have recently made significant progress.
Novel fundamental vision primitives, such as Lowe fea-
tures [18], provide novel tools for extracting distinctive
invariant features from images which can be used to reliably
match different views of an object. An increasingly powerful
set of tools is being developed to address complex vision
problems. Researchers have also made significant progress in
specific applications, such as semantic image retrieval [24]
and semantic video search [22]. However, few of these

Fig. 1. Objects that possess inherent degrees of freedom; these degrees of
freedom cannot be extracted from visual information alone, they have to be
discovered through physical interaction

advances in the realm of perception have had significant
impact in robotics.

Why have the advances in computer vision not had sig-
nificant impact in robotics? We believe that there are two
closely related reasons. First and foremost, after initial and
foundational work at the intersection of computer vision and
robotics [13], both fields have progressed mostly indepen-
dently. As a result, roboticists currently do not exploit the
full potential of state-of-the-art computer vision techniques.

But there is a second important reason for the lack of
impact made by recent progress in computer vision. We
believe that adequate perceptual capabilities have to be
developed in the context of a specific robotic task. The
perceptual information extracted from the sensor stream
can then be tailored to the task to provide the appropriate
feedback to ensure its robust task execution, in particular
in the presence of significant uncertainty. In contrast, the
majority of computer vision research is concerned with
general perception skills. The lack of impact such skills have
had in robotics is a result of the difficulty in developing
general, task-relevant perception skills.

The importance of considering the perception problem in
the context of a specific task has been demonstrated in a
highly visible manner by Stanford’s robot Stanley during the
2005 DARPA Grand Challenge race. The vision techniques
that helped Stanley win the race were effective because they
were tailored to a specific problem [7].

In this paper, we introduce the concept of Interactive
Perception. Interactive Perception exploits forceful interac-



tions with the environment to uncover adequate perceptual
information for the robust execution of specific tasks. The
restriction to a specific task facilitates the perception task, as
only task-relevant information has to be extracted from the
sensor stream. The inclusion of forceful interactions into the
perceptual process makes it possible to extract information
from the environment that would otherwise be unobtainable
or could only be obtained with significant domain knowl-
edge.

To illustrate the promise of Interactive Perception as a
perceptual paradigm for autonomous robotics, we present
early efforts towards the development of perceptual skills
that extract kinematic models of the environment. Many
objects in everyday environments possess inherent degrees of
freedom that have to be actuated to perform their function.
Such objects include door handles, doors, drawers, and a
large number of tools, such as scissors and pliers.

Knowledge of their kinematic models is necessary for the
successful execution of various tasks. Since it is impossible
to provide an autonomous robot with a kinematic model for
all objects in the environment, the robot has to be able to
extract such a model from its surroundings.

In this paper, we show preliminary work towards inter-
active perception primitives that extract kinematic models
from the environment. In our experiments, a robot interacts
with a set of tools; the resulting sensor stream provides
sufficient information to extract a model of their kinematics.
This model is then employed to compute an action that
transforms the kinematic state of the tool into a desired
goal state, mimicking the use of the tool to achieve a
task. We believe that the relative ease with which we are
able to address this task makes a convincing case for the
use of interactive perception as a perceptual paradigm for
autonomous robotics.

II. RELATED WORK

Successful manipulation depends on the sensory stream
that is used to assess the state of the world. The classical
approach (see [10]) towards streaming information from
sensors to actuators analyzes a given stream of information in
order to make a decision regarding the best course of action.

The problem of interpreting a stream of sensory infor-
mation dates back to the first days of AI. Computer vision
researchers explored extensively the problems of object seg-
mentation and labeling from static images. These problems,
which seems to be solved effortlessly by humans, were found
out to be quite challenging. Researchers have realized that
information about dynamic scenes that is acquired continu-
ously over time is easier to understand, and that additional
view points can provide important information.

Active vision is a strategy which makes the observer an
active participant in the process of data acquisition [1], [?],
[2]. In the vision domain, tremendous progress was made
using this strategy [10]. Extracting structure from visual
input, for example, was found to be much simpler when the
camera’s motion can be controlled by the observer [20], [27].
Moreover, by generating a camera motion, an important tool

for many vision algorithms such as feature tracking, can be
applied to a static object. Consequently, difficult problems
such as depth estimation become trivial by the deliberate
generation of optical flow [17].

Active vision represented a paradigm shift in which the
agent is no longer a passive observer. The agent can actively
affect the visual stream by controlling the position and
orientation of its sensors. Along with it, the development
of new tools and new applications was imminent. One such
application is visual servoing [14], which can for example
leverage visual sensory input into accurate position control of
a robotic manipulator. In this example, the observer controls
both the robotic arm and the camera, thus can actively change
the visual stream. This scenario demonstrates how position
control, one of the fundamental primitives of manipulation,
can be greatly improved by interacting with visual input.

Controlling the movement of a camera reveals new infor-
mation. However, in some cases, this process does not gener-
ate the data required to support a specific task. For example,
object segmentation and predicting possible movement of
rigid bodies in a plane remain great challenges even when
camera movements can be controlled. Physical interaction
with the world can remedy many of these difficulties. For
example, object segmentation has been shown to be relatively
simple when vision and manipulation interact. Instead of
attempting to interpret a scene using cues from a static image,
Fitzpatrick and Metta (see [9], [21]) actively poked objects
using a robotic manipulator. Optical flow methods allowed
them to identify which objects in the image had moved as a
result of the forceful interaction with the manipulator, thus
identifying which rigid bodies are not attached to each other.
The objects’ outlines were also retrieved. We see this work
as the precursor of the Interactive Perception framework.

The task of predicting the movement of novel objects in
the plane can be simplified by interacting with the objects.
Christiansen et al. address this problem by placing objects
on a tray which could be tilted by a robotic agent (see [3]).
They show that by actively tilting the tray, a robot can
increase its knowledge about the object’s behavior. The robot
learns about the object’s response to the tilting actions and
builds a model which allows the planning and execution of
a desired object displacement. Thus, the complex task of
understanding how an object can move is made simple by
actively moving the observed object.

Stoytchev et al. have used a predefined set of interactions
with a rigid object (tool) to explore the tool affordances [25].
They extracted the movement of rigid bodies in response to
intentional poking by the robot. The acquired knowledge can
later be applied during a task execution stage. The complex
task of predicting the behavior of rigid bodies becomes much
easier when the robotic agent is allowed to deliberately affect
its environment.

The last three examples demonstrate the positive effects
that deliberate action has on the successful completion of
tasks and on the difficulty of the perception problem. The
interaction between the agent and its environment reveals
sensory information relevant to the task at hand.



Active vision has turned sensing from a passive to an
active process of data collection. The next natural step seems
to be the ability to actively change the world to further
increase sensor range. The following section discusses this
new paradigm, and explains how it can dramatically improve
the capabilities of a robotic agent in an unstructured and
dynamic environment.

III. INTERACTIVE PERCEPTION

Robots live in the physical world and as such have to
face the challenges of this world. Being an embodied agent,
however, also holds some promise: robots are not restricted
to be passive observers. Robots can direct their interactions
with the world in specific ways to facilitate the execution of
a task.

Developing robots that can operate in a dynamic environ-
ment is the major challenge for roboticists. One important
aspect of this problem is perception. The difficulty arises
from the amount of uncertainty inherent to the sensing
process: two sensor readings of the same object can be
quite different due to lighting conditions, object composition,
and obstructions. Actively directing perception by deliberate
interaction with the environment can provide a remedy to
this difficulty.

Many perceptual tasks can be greatly facilitated by physi-
cal interactions with the environment. Such interactions can
remove obstructions, provide an easy and controlled way of
exposing multiple views of an object, or can alleviate the
negative effects of lighting conditions by moving objects
in the field of view. Other perceptual tasks are difficult or
even impossible to accomplish without interacting with the
environment. For example, reading the text in a closed book,
checking whether a door is locked, and finding out what is
the purpose of a switch mounted on the wall. Physical inter-
actions thus can make traditional perceptual tasks easier and
they make a new class of perceptual information accessible
to a robotic agent.

The promise of Interactive Perception is supported by ex-
amples from the development of physical and mental skills in
humans. During the acquisition of physical skills by infants,
for example, physical interactions with the environment are
necessary to bootstrap the cognitive process of learning the
connection between action and effect, the kinematics of the
own body, and the properties and functions of objects in the
environment.

The related work section has outlined the progression of
computer vision towards active vision. We presented several
examples of perceptual processes that were aided by physical
interactions of a robotic agent. We refer to this new approach
as Interactive Perception. Interactive Perception continues
the progress from static image analysis to active vision by
integrating action and perception into a single, synergetic
process.

However, the capability to interact with the environment
as part of the perceptual process also incurs the additional
cost of choosing and executing the most adequate interaction
for a specific perceptual task. Because a large number of

possible interactions may be available to the robotic agent,
this is a challenge. Clearly, the agent should choose the action
that promises maximum progress towards accomplishment
of the task. For Interactive Perception to be fully effective,
perceptual primitives have to be integrated into a framework
that allows the selection of the most adequate perceptual
interaction.

Active learning is a branch of machine learning that
attempts to dynamically focus the learning process of a
learning agent (see [4], [5], [11]). The learning agent can
select its training data incrementally and in response to all the
information acquired previously. In machine learning tasks,
this active learning process has been shown to be highly
effective.

Interactive Perception has to be integrated into an active
learning framework to allow the robotic agent to incremen-
tally extract task-relevant perceptual information from the
environment until the task can be accomplished successfully.
This integration of active learning and Interactive Perception
will be the subject of future investigations. In this paper, we
focus on a specific perceptual primitive to demonstrate the
effectiveness of interactive perception.

One important category of perceptual information that can
be accessed through physical interactions is the inherent
kinematics of articulated objects in the environment. A kine-
matic model enables a robotic agent to predict the behavior
of objects. This ability is essential in the context of tool
use, for example. Real world environments are abundant
with articulated bodies: doors, door handles, drawers, light
switches, and hand tools, to name only a few. To use these
objects in a purposeful manner, i.e. to open a door or a
drawer, or to use a tool, a robotic agent has to understand
the kinematics of these objects. Therefore, understanding
the kinematics of articulated bodies is a crucial first step
in the process of developing robotic agents that can operate
in unstructured and dynamic environments.

The following sections of this paper demonstrate the
effectiveness of Interactive Perception in the context of a
specific perceptual task—a task that is impossible to ac-
complish with a close integration of action and perception.
The task is intended to capture the complexities of tool
use for tools with inherent degrees of freedom that have
to be actuated to perform the tool’s function. Our robot
is presented with a set of tools and interactively builds a
kinematic model. The kinematic model is required to predict
future interactions with the tool, and more specifically to
learn the functions that can be performed using that tool.
We will present a simple Interactive Perception algorithm
which uses a manipulator and a video camera to learn how
tools such as scissors, shears, players or staplers can be used.
The acquired kinematic model is then used by the robot to
predict an interaction with the tool that accomplishes a given
task, mimicking the use of the tool.



IV. OBTAINING KINEMATIC MODELS THROUGH
FORCEFUL INTERACTIONS

We now describe how Interactive Perception can be used to
the extract the kinematic properties of an object. We present
algorithms to construct a kinematic model for previously
unseen objects. We will show how by interacting with
unknown objects, a robot is easily able to recover their
kinematic properties. The robot can subsequently use this
model to predict the appropriate interaction for tool use.

Since our primary goal is to show the promise of interac-
tive perception as a perceptual paradigm, several simplifying
assumptions were made. To facilitate the computer vision as-
pects of our task, we have placed all objects on a plain white
background, and randomly glued stickers to add attractive
features. Moreover, we have assumed that the motion takes
place in a plane orthogonal to the image plane. In order to
simplify the manipulation task, we manually programmed a
trajectory for the manipulator. Finally, we assumed objects
with exactly one degree of freedom (one joint). In our future
work, we plan to successively remove all of these restrictions.

The vision-related simplifications are relatively easy to
remove. A big body of research exists on tracking in cluttered
environments without special markers. Removing the 2D
assumption could be done using active vision techniques.
The robot controls the position and orientation of the camera,
and therefore can align it with the plane of motion. More-
over, proprioception can be used to bootstrap the alignment
process. The robot can collect spatial information regarding
the exact position of an object. This data enables accurate
depth perception, thus allowing the robot to improve the
positioning of the camera. Not surprisingly, removing the
vision-related assumptions requires further integration be-
tween vision and manipulation.

Since the robot also executes the motion, this is rela-
tively simple. In order to interact with the object without
a preprogrammed trajectory, we plan to start our exploration
process with active segmentation similarly to [9] and [21].
This includes an initial random phase were the manipulator
swaps the environment in an attempt to segment objects.
The interaction may provide interesting objects, for which
we might want to construct a kinematic model. Finally,
extending the work to multiple joints is a trivial extension,
as will be indicated in the next subsection.

A. Algorithm

In this section we describe a simple algorithm which
allows, by means of interaction with the environment, the
construction of a kinematic model. Our algorithm builds a
DH parameter description [6] of a given kinematic chain,
and uses the obtained model to create a plan for forming a
right angle between the two links of the chain.

Any kinematic model requires the identification of the
joints in the kinematic chain. The key insight behind the
algorithm is that the relative distance between two features
on a rigid body does not change as the body is being
manipulated. Moreover, the distance between points on two
different links connected by a joint does change as the links

rotate about the joint. Using these two observation, we can
conclude that the distance between any point on any one of
the two links and a point on the joint does not change.

Tracking a set of features of an object allows us to
compute the distance between any two features. One would
expect to be able to distinguish three groups of features:
features on link 1, features on link 2, and features on the
axis. Features in one of the first two groups will not move
with respect to each other, but may move significantly with
respect to features in the other group. The third group is a
set of features which lie on the joint, or on the two links
simultaneously. Therefore, those features belong to both the
first and the second group. While our manipulator interacts
with the object, our vision system tracks features on the
object. We separate the features into the three groups, and
consequently find the features which represent the axis.

Formally, let us define a graph G = (V,E) where
V represents the set of tracked features. An edge e =
(vi, vj) ∈ E exists in the graph if and only if the distance
between vi and vj does not change during the interaction
(after accounting for measurement error). The resulting graph
contains vertices with high degrees, which represent features
that lie on a joint (connected to features on both links).
Removing features with high degrees breaks the graph into
two separated components; each one represents the set of
features on one of the two links.

In order to describe the links of the object, we can
construct a convex hull around the points of each group.
Tracking enough features increases the match between the
convex hull and the actual shape of the link. The length
of each link is taken to be the distance between the furthest
point in each group and the joint. We use this newly acquired
knowledge to instantiate a DH-parameter model for planar
kinematic chains. This model is used later to predict the
necessary action in order to manipulate the kinematic chain
into a cross shape.

The following subsections describe in details the imple-
mentation of the kinematic model building algorithm. It is
worth noting that the specific way in which we choose
features, track them or analyze their relative motion does
not affect the algorithm.

B. Tracking objects

Our vision system uses the open source computer vision
library OpenCV [15]. OpenCV provides us with an easy
interface to the camera (image capture and recording), and
contains a very rich set of image processing tools. We track a
set of image features, and store the results in a matrix form.
For each feature, we record its position in each frame.

We use OpenCV’s API for feature selection and tracking.
Feature selection is accomplished using OpenCV’s API (cv-
GoodFeaturesToTrack). In principle, features are selected by
finding corners with big eigenvalues in the image. We then
compute the eigenvalue for every source image pixel, per-
form non-maxima suppression (leaving only local maxima
in a 3x3 neighborhood), and reject corners with eigenvalues
below a certain quality level threshold. Finally, we keep a



predefined distance between features. If a couple of features
are clustered together around an attractor, we gradually
remove features (starting with the weakest feature) until the
desired distance between features is achieved.

Once features are selected, we need to track their change
in position between frames. To that end we use an optical
flow algorithm. OpenCV’s implementation of optical flow is
based on Lucas and Kanade’s algorithm (see [19]).

C. Constructing a graphical representation

Every kinematic chain is composed of links and joints.
Therefore, the first task we perform is axis detection. Let
us consider the tracked features in the case of two links
connected by a joint. Two features on different links (differ-
ent rigid bodies) have a non constant distance as the links
move independently about the joint. In contrast, the distance
between two features that are on the same link remains
constant.

We use these trivial observations to build a graph based on
the maximal change in distance between two features. Every
node v ∈ V in the graph represents a tracked feature in the
image. An edge e ∈ E connect nodes (vi, vj) if and only if
the distance between vi and vj remains below a threshold.
This threshold represents our tolerance for noise. We assume
that changes in distance below the threshold represent points
that keep constant distance with respect to each other. Since
we get many measurements for the distance between two
points (one for each frame), we define the distance as the
maximal distance over all frames.

The resulting graph will be used by the algorithm de-
scribed in the following section. This algorithm works only
for rotational joins. Kinematic chains may have other types
of joints (i.e. prismatic, spheric, etc.). We plan to remove
this limitation in future work.

D. Graph separation and model building

In the previous section we described the construction of a
graph G(V,E) in which the nodes V represent the tracked
features in the image, and the edges E connects two nodes
that are on the same rigid body. We now process this graph
to learn the position of the axis, and to separate features into
two groups (one group for each rigid body).

First, we begin with finding the axis in an object using
the graph. As explained in the previous section, nodes on the
same rigid body are likely to be connected to other nodes
on the same rigid body. A node that represents a feature
on an axis is connected to nodes on both rigid bodies that
are connected through the axis. Consequently, nodes on an
axis are nodes with the highest degree in the graph. Finding
features that are clustered around the axis therefore merely
requires to find the center of mass of a few highest degree
nodes.

Second, we address the problem of separating the graph
into two groups of nodes, where each group represents a
different rigid body. We note that an edge between nodes
means that they are likely to be on the same rigid body.

In order to find the number of separated components in the
graph we proceed as follows:

1) Pick a random node and assign to it a color
2) Recursively color all its neighbors until all nodes in

one connected components have the same color
3) Proceed to the next component, until all nodes are

colored

The number of colors used tells us the number of separated
components in the graph. In the beginning, we are likely to
find one component in the graph as nodes that represent fea-
tures around the joint are connected to nodes that represent
features on both links. We gradually remove nodes with high
degrees, until the two components are separated.

When the iterative process is over, we are left with two
groups of nodes which reliably represent two different rigid
bodies. The next step is getting a crude description of the
outline of the object in hand; we rely on OpenCV’s im-
plementation of Sklansky’s algorithm for finding the convex
hull of a group of points. The details of the algorithm are not
important here. Instead, it is worth noting that the result is the
minimal polygon which contains all the points in the set. For
us, the result means a rough outline of the two rigid bodies
in the image. The exact shape of the outline depends on the
tracked features as well as the points that were removed in
order to separate the graph. In the future, we plan to use
active segmentation (i.e. [9], [21]) to extract a more accurate
outline of the rigid bodies.

The task that the robot executes is the manipulation of
each tool into a cross shape, that is forming a right angle
between the tool’s links. We choose two points, one on each
link, which are the furthest from the joint. The distance
between each point and the joint is taken as the respective
link’s length. Using the information about the position of the
joint and the length of the links we are able to construct a
DH parameter model. This model provides us with a simple
method for computing the affects of the displacement of one
link on the angle between the links.

The results of this section can be summarized as model
building. We have shown how to find the axis and detect
the rigid bodies. Consequently, we are able to construct a
kinematic model of the given object, and plan future inter-
actions with it. In the next section we describe experimental
results of using this algorithm to learn the operation of 4
tools: scissors, shears, plier, and a stapler. Our robot builds
a kinematic model for each tool, and then devises a plan for
performing the task of setting a desired angle between the
tool’s links.

V. EXPERIMENTAL RESULTS

The previous sections have outlined our approach towards
extracting the kinematics of newly encountered objects. In
this section we present our robotic platform UMan and
discuss a set of experiments which illustrate the simplicity
and effectiveness of Interactive Perception.



Fig. 2. UMan interacts with a tool by reaching its arm towards the tool.
The right image shows the tools as seen by the robot, with dots marking
the tracked features. The left image shows the experimental setting

A. System description

The experiments presented in this paper were performed
using our mobile manipulator UMan (UMass Mobile MA-
Nipulator). As Interactive Perception requires both sensing
and manipulation, we will now describe the respective capa-
bilities and limitations of our robotic platform. For a more
detailed review of UMan see [16].

UMan consists of a holonomic mobile base with three
degrees of freedom, a seven-degree-of-freedom manipula-
tor arm, and a four-degree-of-freedom hand. The platform
provides adequate end-effector capabilities for a wide range
of dexterous manipulation tasks. We consider mobility as
additional degrees of freedom in service to manipulation,
rather than as an objective itself. Appropriately, UMan’s mo-
bile base supports manipulation without imposing additional
constraints.

Fig. 3. Barrett 7-DOF WAM

UMans mobility is provided by a modified Nomadic
XR4000 mobile base. Its four casters are dynamically de-
coupled [12] to provide holonomic motion, which facilitates
a unified control scheme for degrees of freedom associ-
ated with mobility and manipulation. The XR4000 mobile
platform was specifically designed for mobile manipulation.
Its power system allows untethered operation for several

hours. The base is sized to be able to contain adequate
computational resources and sensors.

A Barrett Technologies Whole Arm Manipulator (WAM)
[26] with seven anthropomorphic degrees of freedom (three
in the shoulder, one in the elbow, three in the wrist, see Fig-
ure 3) together with the three-fingered Barrett hand provide
UMan’s dexterous manipulation capabilities. All electronics
for the control of the arm are built into the arm itself,
facilitating its integration with a mobile platform. The WAM
provides good dynamic performance and torque sensing in
its joints. Uman is thus capable of using all of its links
to perform force controlled manipulation tasks. The three-
fingered Barrett hand (see Figure 4) can flex any of its three-
link fingers individually. A fourth degree of freedom in the
hand permits switching between an enveloping grasp to grasp
with an opposing thumb.

Fig. 4. Barrett 4-DOF Hand

UMan’s mobile base houses two single-board PCs with
Pentium 4, 2.4GHz CPUs. One of these PCs is dedicated
to real-time control of the base and the manipulator arm.
It runs the real-time operating system QNX [23]. The other
PC runs Linux [8] and is dedicated to higher level tasks,
such as vision processing, navigation, motion planning, and
task planning. Both computers are connected via a dedicated
wired Ethernet link.

UMan is equipped with a rich suite of sensors. A SICK
LMS200 laser range finder enables navigation. Visual input
is received from a Unibrain Fire-i web camera mounted on
the wrist. The camera has an IEEE-1394 (Firewire) interface
and can produce 30 frames per second at a resolution of 640
by 480 pixels. By controlling the position and orientation of
its arm (and consequently of the camera), UMan surpasses
the capabilities of many passive and active vision hardware
systems. Linking vision and manipulation together allows
UMan to look behind obstructions in the field of view and
generate multiple views of the same object. Finally, UMan
is equipped with two force sensors that improve its range of
dexterous manipulation. The first is mounted on the fingertips
of UMan’s Barrett hand (3 ATI Nano17 6-axis force/torque
sensors). The second is an ATI Gamma 6-axis force/torque
sensor, mounted on the wrist.

B. Experiments
We used four tools during the experimental phase: scissors,

shears, plier, and a stapler. Each one of the tools has a single
degree of freedom (one revolute joint). The only exception is
the pliers which also have a prismatic joint. For the purpose
of this paper we have ignored this prismatic joint.

The tools are off-the-shelf products and have not been
modified for our experiments. They vary in scale and shape.



Fig. 5. Experimental results showing the use of the interactive perception framework in extracting a model of the kinematic properties of different objects.
The first row of images shows the four objects (scissors, shears, plier, and stapler) in their initial pose. The second row shows the final pose of the four
objects after the robot has interacted with them. The third row shows the revolute joint that was detected using the methods described in this paper; the
revolute joint is marked with a green circle. The fourth row of images shows the links of the obtained kinematic model and the manipulation plan to form
a right angle between the two links of the tools. Putting the two links into a 90◦ angle here serves as an example of tool use. The links of the tools are
shown as green lines, and the orientation of one of the links to achieve the goal configuration of the tool is marked by a red line. The last row of images
shows the results of executing the manipulation plan as presented in the previous row: the two links of the tools have been arranged in a 90◦ angle.

For example, the scissors are much smaller than the shears,
have different handles and different colors. The pliers have
very long handles compared to the size of their teeth. And
finally, the stapler’s links do not extend to both sides of the
joint, unlike the other three tools. Despite these differences
in appearance, all four tool belong to the family of two-link
kinematic chains with a single revolute joint.

Figure 5 illustrates the experiments done using four tools:
scissors, shears, plier, and a stapler. Each row represents a
different phase in our algorithm. First, we see the tools in
their initial pose (before the interaction begins). Next, we
see the tools in their final pose (after the interaction). The

third row shows the location of the axis of rotation (joint),
as detected by interacting with the tools. In the fourth row,
two straight lines mark the position of the links, and a third
line indicates where one of the links needs to be moved to in
order to create a right angle between the links. Finally, the
last image shows the tools after the execution of the plan
from the previous image — each tool was manipulated to
form an angle of 90◦.

The images in the third row of Figure 5 shows the revolute
joint that was detected using the algorithm described in this
paper. The axis of rotation is marked by a neon green circle.
In all four cases the detection is very accurate.



The images in the fourth row of Figure 5 shows the
detected links (marked by straight neon green lines). The
algorithm described earlier uses the information collected in
the interaction with the tool to build a kinematic model. The
kinematic model was queried with the task of forming a
right angle between the links of each tool. The red straight
line marks the plan suggested by the model, that is how the
relevant link needs to be positioned to form an angle of 90◦

between the two links.
Finally, the images in the last row of Figure 5 shows the

four tools after executing the plan predicted by the kinematic
model (depicted in the previous row). The task was to form
a right angle between the links of each tool, and the results
are very accurate in all cases.

The performance of our algorithm holds promise for future
instances of Interactive Perception. We find that the accurate
results that the robot achieved despite the simplicity of
the algorithm and the the ease of implementation are very
encouraging. Moreover, the implementation itself requires no
parameter tuning. All experiments were done using the same
executable, albeit the objects had different sizes and shapes,
and the distance between the objects and the camera was
changed.

VI. CONCLUSION

We introduced Interactive Perception as a perceptual
paradigm for autonomous robots. This new framework does
not distinguish between manipulation and sensing, attempt-
ing to close the gap between sensing and acting. High degree
of integration between action and perception increases the
robustness of the system as it allows it to handle a variety of
unexpected scenarios in dynamically changing environments.
Interactive Perception enables a robot to actively improve the
information collected from its sensors by interacting with
its environment in a directed fashion. In turn, this focused
knowledge is used to improve future interaction by building
better models and plans.

In this paper we have given a specific example of a
complete action-perception cycle. We have shown that a
robot can easily extract the kinematic properties of novel
objects from a visual sensor stream if it is able to physically
interact with these objects. We have further demonstrated
how the extracted knowledge about the object can be used to
determine appropriate use of the object. By interacting with
the world, the robot extracts information about the world,
which in turn enables it to interact with the world ways that
facilitate the accomplishment of a specific task. Action and
perception are integrated into a continuous synergetic cycle.

We hope that this work demonstrates the necessity for
research in computer vision and in robotics to become
more integrated. We further hope to have demonstrated that
Interactive Perception is a promising perceptual paradigm for
autonomous robotics.

Interactive Perception is a newly emerging field, and as
such there are many possible directions for future research
and extensions of the presented work. In our future work,
we will remove the simplifying assumptions introduced

during our experiments. This includes improving our feature
tracking and contour detection algorithms by using active
segmentation techniques [9], [21]. A second direction we
would like to explore is the extendability of our algorithm
to general kinematic chains. We thus need to extend our
algorithm to also recognize other types of joints, such as
prismatic joints or spherical joints. The algorithm further
needs to be extended to handle objects that contain multiple
separate joints. Another interesting extension to this work
would be adding the capability to analyze kinematic chains
that have more than one joint.

We plan to extend the framework of Interactive Perception
to include more sensors (i.e. force sensors, laser scanners,
multiple cameras). With the integration of multiple sensors
and actuation, we anticipate that the Interactive Perception
framework will enable us to address many exciting problems.
One example is the task of opening door (Figure 5), which
involves learning the kinematics of doors and door knobs as
well as the amount of force required to twist a handle and
push the door.

Fig. 6. The axis of rotation for a door knob, extracted using Interactive
Perception.
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