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Abstract— Roboticists are working towards the realization of
autonomous mobile manipulators that can perform useful tasks
in human environments. These environments pose a significant
challenge because of their complexity and inherent uncertainty.
They are characterized by having a high dimensional state space.
Consequently, performing tasks in these unstructured environ-
ments remains a challenge. Recently, researchers have been
successful in developing skills that can handle the complexity of
unstructured environments. We hypothesize that those successes
are due to a careful implementation that is able to reduce the
complexity of the state space, and render the respective problems
tractable. In this paper, we analyze this increasing body of
literature, in an attempt to extract the common ideas that enable
the reduction of the state space. Based on these commonalities, we
propose a set of guidelines to facilitate progress for autonomous
mobile manipulation in unstructured environments.

I. INTRODUCTION

The realization of autonomous mobile manipulators will
enable a variety of applications with significant societal,
scientific, and economical impact. Motivated by the potential
of these applications, researchers are beginning to address the
challenges posed by unstructured environments (Fig. 1). In
this paper, we will attempt to identify common characteristics
of successful research efforts. We believe that the resulting
insights will contribute to the understanding of the challenges
of unstructured environments, and will accelerate the commu-
nity’s progress. Our goal is neither to survey the entire field
of autonomous manipulation in unstructured environments nor
to identify successful technical approaches and techniques.
Instead, we try to uncover guidelines that will help focus our
community’s research efforts towards the successful deploy-
ment of robots in unstructured environments. We hope that
this paper serves as a starting point for discussion.

The deployment of autonomous robots in unstructured and
dynamic environments poses a number of challenges that
cannot easily be addressed by approaches developed for highly
controlled environments. In unstructured environments, for
example, robots cannot rely on complete knowledge about
their surroundings. In fact, perceiving the environment be-
comes one of the key challenges. Robots have to autonomously
and continuously acquire the information necessary to support
decision making. Moreover, robots cannot assume that their
actions succeed reliably. Instead, they have to continuously
monitor their effect on the environment and possibly react to
undesired events. In contrast, many existing, well-established
techniques in robotics rely on perfect knowledge of the world
and perfect control of the environment.

The challenges associated with unstructured environments
are a consequence of the high-dimensional state space and
the inherent uncertainty in mapping sensory perceptions onto

Fig. 1. Examples of Mobile Manipulators. Top: Asimo (Honda), UMan
(UMass Amherst), QRIO (Sony) Bottom: HRP-3 (Kawada Industries), AR-
MAR (University of Karlsruhe), WABIAN RIII (Waseda University Tokyo)

specific states. This fundamental premise will guide our ex-
amination of relevant work throughout the remainder of this
paper. We believe that the high dimensionality of the state
space represents the most fundamental challenge as robots
leave the highly controlled environment of the factory floor
and enter into unstructured environments.

The main hypothesis in this paper is that to succeed in
unstructured environments robots have to carefully select task-
specific features and identify relevant real-world structure to
reduce the state space without affecting the performance of
the task. In the remainder of this paper, we will analyze
existing work in autonomous mobile manipulation. We will
show how these example exploit task-specific knowledge and
inherent structure to reduce the complexity of problem solving
in high dimensional state spaces. Ultimately, we hope, these
and related ideas may render autonomous mobile manipulation
computationally tractable, even within the high-dimensional
state space associated with unstructured environments.

II. ROBOTS IN UNSTRUCTURED ENVIRONMENTS

We now analyze robotic research towards applications in
unstructured environments. In our discussion, we will attempt
to identify fundamental insights and ideas leveraged to address



the problems associated with high-dimensional state spaces.
Following our hypothesis that these problems can be addressed
using task-specific structure inherent to the physical world,
we will group relevant research according to the specific
(sub)task they address. We begin with a discussion of robot
motion generation, proceed with work in robot perception, and
then examine relevant work in manipulation. Finally, we also
discuss a task-independent method of providing structure to a
robot, namely, through human/robot interaction.

A. Robot Motion

Robots perform tasks by moving through the environment.
Given our emphasis on autonomous mobile manipulation, we
focus on motions in service of manipulation, i.e., collision-free
motion for end-effector placement. The problem of generating
such motion is a specific instance of the motion planning
problem. Motion planning for robots with many degrees of
freedom is provably computationally difficult, even in highly
structured environments, due to the high-dimensional config-
uration space [17].

Unstructured environments impose a number of additional
difficulties for motion generation, when compared to the
classical motion planning problem [15]. In unstructured en-
vironments, a robot can only possess partial knowledge of
its surroundings, objects can change their state unbeknownst
to the robot, and manipulation tasks may require the end-
effector to move on a constrained trajectory rather than simply
to reach a specific location. Each of these difficulties make
the motion generation problem more difficult. The explicit
coordination of planning and sensing necessary to handle dy-
namic environments further increases the dimensionality of the
state space. Furthermore, the more complex task requirements
impose stringent requirements for high-frequency feedback.

Existing motion planners make assumptions that are too
restrictive for unstructured environments and are too com-
putationally complex to satisfy the feedback requirements.
These assumptions and the computational complexity are
a consequence of a fundamental premise of motion plan-
ning: the assumption that the high-dimensional configuration
space is the most suited solution space. Planners following
this paradigm use workspace information solely for collision
checking. Almost all real-world environments, however, con-
tain significant amount of structure: buildings are divided into
hallways, rooms, doors; outdoor environments contains paths,
streets, intersections; objects, such as shelves, boxes, tables,
chairs have favored approach directions. This information is
ignored when a planner exclusively operates in configuration
space. As a result, most motion planners have to assume that
the environment is perfectly known and that it remains static
during planning.

The structure of real-world environments can be used to
identify regions of configuration space important to the so-
lution of the planning problem. Compared to configuration
space, workspace information is low-dimensional and its con-
nectivity can be determined efficiently. Relevant workspace
regions can then be mapped onto small subsets of configu-

ration space. Effectively, the solution to a low-dimensional
workspace problem is lifted into high-dimensional configu-
ration space to provide a seed for the planner. The planner
can now focus the search in configuration space on small
areas and thereby alleviate the computational complexity of
planning in a high-dimensional space. This general idea is
known as decomposition [23, 3, 4, 24]. It uses an easily
computed solution to a low-dimensional problem to simplify
the solution to the high-dimensional problem.

The structure of real-world environments can also be used
to collapse entire regions of configuration space onto a single
state. This can be accomplished with the help of feedback
controllers. For the purpose of this discussion, we view
controllers as local planners that lead the robot from all state
with the domain of attraction to the converged state or attractor.
By adequately tiling a high-dimensional space with attractors
and associated controllers, planning can be performed in a
substantially reduced state space.

The elastic roadmap approach [25] combines the ideas of
decomposition and tiling. Based on workspace information,
the planner determines an appropriate tiling of configuration
space with controllers (the tiling does not necessarily cover
the entire configuration space). The tiling defines a discrete
roadmap in which attractors are connected if the robot can
transition between the respective states using the controller as-
sociated with the target state. The elastic roadmap planner can
now determine global configuration space connectivity based
on a simple graph computed using workspace information.
The computation of the elastic roadmap is efficient because
it only captures connectivity information and does not require
the determination of specific paths that would be invalidated
frequently in dynamic environments.

The gained efficiency comes at the cost of completeness
guarantees for the planner. To maintain completeness guar-
antees for motion planning, it may be necessary to plan
in configuration space. But even in this case it is possible
to leverage the structure of real-world environments. The
planning process can be viewed as search in configuration
space. During this search, there is a classical trade-off be-
tween exploration and exploitation [22]. During search in
configuration space, information about the local structure is
acquired. This information can be used to deliberately balance
exploration and exploitation. When relevant local structure has
been identified, it can be used to perform exploitation. When
such structure is not present, the planner performs exploration.
Such deliberate balancing of exploration and exploitation has
been shown to provide substantial performance improvements
in motion planning [18].

The ideas of decomposition, tiling, and balancing of ex-
ploration and exploitation have proven effective at dealing
with high-dimensional planning problems. Each of these ideas
leverages information about structure in the environment
to alleviate the computational burden associated with high-
dimensional state spaces. We stipulate that taking advantage of
structure present in the real world is key to achieving the per-
formance and competence required for motion planning that



is suited for applications of autonomous mobile manipulation
in unstructured environments.

B. Robot Perception

To perform tasks in an environment that is not perfectly
controlled and modeled, robots must have adequate perceptual
capabilities. The process of perceiving the world and interpret-
ing the acquired information enables robots to understand the
state of the world, devise plans to alter the state, and observe
the effects of their actions on the world.

The robot’s environment can be controlled to varying de-
grees. In principle, environments that are less constrained
are more challenging to perceive. In real-world unstructured
and dynamic environments, perception has to address an
intractable amount of information acquired by multiple sensor
modalities. This sensor data is typically noisy and redundant.
Moreover, even without the uncertainty introduced by the
sensors, the world itself is often ambiguous: a lemon and
a tennis ball may look the same from some perspective, a
cup can be invisible if the cabinet’s door is shut, and it may
be difficult to distinguish between a remote control and a
cell phone when they’re both facing down. These factors all
contribute to the difficulty of perceiving the state of the world.

Perception has been the target of several decades of re-
search. Typical work in this field makes assumptions that
are not valid in unstructured and dynamic environments. For
example, work in face recognition often makes assumptions
about the position and orientation of the person in the image,
results in object segmentation are based on the ability to
distinguish between object and background based on color dif-
ferences, and object recognition is often reduced to computing
similarities to a limited set of given objects. In unstructured
environments, however, position and orientation cannot be
controlled, assumptions about colors and shades are difficult
to justify, and the range of possible objects the robot can
encounter is intractable.

To address perception in unstructured environments, robots
must be able to reduce the state space that needs to be
analyzed. Sensors can be designed to facilitate some perceptual
tasks by reducing uncertainty and therefore decreasing the
dimensionality of the state space. For example, to compute the
distance to objects in the environment, robots need to associate
depth with visual information. This is typically done by using a
stereo vision system and solving the correspondence problem
between two static 2D images. Solving the correspondence
problem, however, is difficult due to noise, multiple possible
matches, and uncertainty in camera calibration. In [14] a
system capable of capturing at least three viewpoints in a
single image is introduced. This reduces the state space by
collapsing a multi-sensor system down to one sensor.

In an unstructured environment, object recognition has been
proven to be very difficult. With large amounts of sensor
information and high variation within objects of the same
category, object recognition is a high dimensional problem.
Despite these difficulties, objects in the same category do share
common characteristics. Using this insight, robots can to focus

their attention to only a small subset of the state space that
contains the most relevant features for classification. In face
recognition, for example, specific relationships exist between
the location of features such as eyes, nose, and mouth. In [10],
this structure, which underlies the entire category of faces, is
being exploited to increase the accuracy of pose estimation
of faces. As a result, the dimensionality of the state space is
dramatically reduced, and face recognition becomes tractable.

Obstacle avoidance is another hard perceptual problem. In
order to avoid collisions robots must solve the high dimen-
sional problem of distinguishing between objects and free-
space, calculating how far away objects are, figuring out
how they’re positioned, etc. This large state space can be
reduced by leveraging relevant knowledge about how the world
behaves. For example, when a robot moves, optical flow is
created by obstacles but not by free-space. This insight is used
in [9] to create an insect-inspired vision system capable of
measuring optical flow and turning away from obstacles. This
reduces the state space by focusing only on features that are
necessary for avoiding obstacles. Similarly, in [16] they avoid
the common approach of calculating complete depth maps and
instead build a learning algorithm to calculate steering angles
directly from raw images.

Perceptual problems pose a significant challenge for robots
in unstructured environment because of their high-dimensional
state spaces. Designing sophisticated hardware, identifying
common object characteristics and focusing on the goal are
examples of approaches that deal with the complexity of per-
ceptual problems. These techniques take advantage of existing
structure in the world to reduce the state space, and therefore
enable robots to solve perceptual tasks in unstructured envi-
ronments.

C. Robot Manipulation and Grasping

Object manipulation requires both reliable motion capa-
bilities and adequate perceptual capabilities. It is a prereq-
uisite of many important applications for robotics such as
planetary exploration, elder care, flexible manufacturing and
construction in collaboration with human experts. The problem
of manipulating the environment includes moving objects of
varying dimensions by pushing or pulling, and prehensile and
non-prehensile grasping of smaller objects. Manipulation is
very challenging, even in structured environments, due to the
complexity of the associated state space. This state space
include the appearance, position, dimensions, and weight of
objects in the scene, as well as many other relevant features
indicating where to push or grasp, and how much force to
apply. The addition of a rich set of actions further increases the
complexity, as robots need to choose between many possible
actions and determine the appropriate parameterizations for
controllers.

Manipulation in unstructured environments faces several
difficulties that are not present in structured environments.
In unstructured environments, object properties required for
manipulation cannot be known a priori. Information about
objects has to be acquired through sensors, but those are



Fig. 2. Researchers often assume that a priori models, such as the CAD
model of the kitchen on the left, are available. In practice, those models are
usually difficult to obtain. Also, such environments are constantly changing
and look more like the kitchen on the right.

often ambiguous, introduce uncertainty, and provide redundant
information with respect to the manipulation task. Further-
more, manipulation in unstructured and dynamic environments
typically requires responding in a timely fashion to a rapidly
changing world.

Researchers typically make assumptions to reduce the com-
plexity of manipulation in unstructured environments. For
example, it is often assumed that complete models of objects
in the environment are available a priori or can be acquired
through sensors, and that the environment remains static
during the interaction. In practice, it is impossible to provide
manipulation with complete a priori models of the real world
(Fig. 2). However, perfect models are not a prerequisite for
successful manipulation in unstructured environments. Ma-
nipulation can be guided by the structure that exists in the
world and which is oftentimes easy to perceive. By leveraging
this structure, the complexity of manipulation in unstructured
environments decreases significantly. For example, with the
insight that most cups, coffee mugs, and teapots have handles,
grasping such objects becomes simpler despite the absence of
perfect models. Similarly, understanding the intrinsic degrees
of freedom of objects such as scissors, staplers, doors, and
books can also reduce the complexity of manipulation in
unstructured environments.

In order to grasp arbitrary objects in unstructured environ-
ments robots have to search a very high dimensional state
space. Grasping many real-world objects, however, requires
considering only a small subset of that state space. When
tasked with grasping a specific object, robots can focus their
efforts on the relevant subset of the state space, thus sim-
plifying the grasping problem. For example, grasping small
rectangular objects can be accomplished by pinching, and does
not require actuating many of the hand’s degrees-of-freedom.
Within the context of a specific grasping task, robots can use
hardware to further decrease grasping’s complexity. In [6], for
instance, careful selection of joint compliance and coupling
schemes enables grasping a large variety of real-world objects
by actuating only a single degree-of-freedom.

Grasping can also be simplified by exploiting the structure
that is inherent to human environments. Most objects in
our world are designed to perform some function, and are
intended to be used by humans. As a result, many real-
world objects share common traits alluding to their intended
use. By focusing on these task-related object properties, the

complexity of grasping is reduced. For example, in [19] visual
data is analyzed to identify a few points that correspond to
good locations at which to grasp an object. Because grasping
features are similar across multiple objects, robots can be
trained to identify them. Consequently, the state space that
needs to be explored in order to grasp objects is significantly
reduced.

Perceiving structure in the world can assist manipulation.
However, acquiring information about the state of the world
can be very challenging in unstructured environments: objects
may be partially obstructed, lighting conditions may be poor,
and the purpose of an object may be difficult to perceive. This
ambiguity in sensor information increases uncertainty about
the world, and therefore increases the size of the state space.
Closely integrating manipulation and perception can decrease
the complexity of the state space. Manipulation can augment
the robot’s ability to perceive structure in the world, which
in turn can benefit manipulation. Through interaction, robots
can remove obstructions, reposition objects to improve lighting
conditions and view point. Interaction with objects can also be
used to facilitate the perception of kinematic structure [12, 11],
which is then used to enable purposeful manipulation. In [5]
interaction is used to determine kinematic and dynamic prop-
erties, which are then exploited to predict future interaction
with objects. Interaction can also be used to generate motion
which facilitates object segmentation [8, 13]. The integration
of action and perception thus reduces complexity and renders
manipulation in unstructured environments feasible.

Manipulation can ameliorate perception in unstructured en-
vironments. The converse is also true: manipulation depends
on adequate perception. And yet, it can be very difficult for
manipulation to use the right perceptual information. The com-
plexity of unstructured environments results in an intractable
amount of sensor data available for manipulation. This data is
mostly redundant and irrelevant for the manipulation task at
hand. By identifying the task’s objective, the robot can focus
its attention to the most task-relevant subset of its perceptual
data. As a result, the state of the world is described with
respect to the manipulation task, which decreases the size
of the state space. For example, in [21] high dimensional
streaming visual data is available for learning tool affordances.
By focusing on motions that occur next to the end-effector,
only a small portion of the visual information needs to be
considered. Consequently, the robot learns tool affordances in
a much lower dimensional and therefore tractable state space.

Robots have to solve high-dimensional problems in order
to manipulate and grasp objects in unstructured environments.
Techniques such as crossing boundaries between action and
perception, exploiting a priori knowledge about objects in
human environments, and focusing on task-specific perceptual
features can be used to reduce the dimensionality of manipu-
lation and grasping. As the state space is reduced, problems
become tractable, thus enabling robots to perform grasping
and manipulation in unstructured environments.



D. Human-Robot Interaction

Communication with humans is another resource robots can
exploit to reduce the complexity of unstructured environments.
Humans can point to interesting features, teach new skills
by demonstration, or use language to transfer knowledge.
Moreover, many real world tasks require cooperation between
humans and robots.

Work towards understanding human communication and
natural language is usually focused on analyzing text and
speech. Also, researchers typically limit the domain to include
only specific topics [20]. Human communication, however,
includes more than just verbal or textual communication. It
involves gestures and other actions with physical manifes-
tation. Moreover, it is impractical to limit the domain of
communication in unstructured and dynamic environments be-
cause those environments are, by definition, high-dimensional,
rapidly changing, and unknown a priori.

In order to facilitate efficient Human-Robot Interaction, the
dimensionality of the state-space has to be reduced without
limiting the robot’s performance. Robots can leverage the
structure that exists in the world and consider the goal they
are trying to achieve to focus their efforts on parts of the
state space that are most relevant. For example, eye contact
can be used to understand the intended audience of verbal
instructions. Hand gestures can narrow the set of possible
objects to which a person may refer. Also, the context of the
task the robot or the person is performing can limit the objects
and concepts included in the conversation, thus reducing the
complexity of the state space.

Teamwork in the real-world often involves teaching and
learning new skills. Communication can be used for teaching.
For example, a skilled human worker can teach by demonstra-
tion or explain using verbal communication and hand gestures.
For robots, learning new skills in unstructured environments
requires reasoning in an intractable and inherently ambiguous
state space: What object exactly is the person pointing to?
Which one the ”round” objects am I supposed to grasp?
And what exactly does ”come closer to me” mean? Humans
often rely on expressive feedback for communication, and are
experts in interpreting it. In [1, 2], expressive feedback is
used during teaching. Robots express frustration, confusion
and curiosity via facial expressions. The human teacher can
easily interpret those cues and use them to accelerate and focus
the teaching session.

Human-Robot cooperation in performing tasks requires
communicating about objects, tools, and goals. Many tasks
require the transition of objects between a person and a robotic
collaborator. Using verbal communication to instruct the robot
is challenging because of the complexity of the environment
and the robot’s mechanism: the robot has to decide where
to position its hand, in what orientation, how to preshape
its fingers, and how much force to apply. In [7] a human
collaborates with a robot in the task of passing objects between
them and placing them on a shelf. With the insight that
humans usually hand objects in a configuration that is easy

to grasp, robot grasping has to consider only a subset of
the the state space related to grasping. Also, by considering
the task, the robot only needs to track the human’s hand
to learn about the position of the object, thus decreasing
the state space that needs to be explored. As a result of
decreasing the dimensionality of the problem, both grasping
and communication about grasping become tractable.

Creating successful interactions between humans and robots
is difficult because of the high dimensionality imposed by
communication. By using hand and eye cues and expressive
communication, humans can direct a robot’s focus toward
relevant areas of the state space. This focuses attention on
the task in order to reduce the overall size of the state space
and makes Human-Robot Interaction possible in unstructured
environments.

III. CONCLUSION

We began our discussion by hypothesizing that to succeed
in unstructured environments robots have to carefully select
task-specific features and identify relevant real-world structure
to reduce the state space without affecting the performance of
the task. We confirmed this hypothesis by analyzing successful
examples of applications in motion planning, perception, ma-
nipulation, grasping and Human-Robot Interaction in unstruc-
tured and dynamic environments. Each one of the examples
we discussed exploited structure present in the environment
to reduce the size of the relevant state space. As a result,
they were able to successfully solve complex tasks, despite
the apparent complexity of the state space.

Encouraged by this positive evidence, we propose two
guidelines that we believe will enable robots to uncover
structure and exploit it. We believe that additional guidelines
may be found. Our ultimate goal is to answer the question:
”How can robots succeed in unstructured environments?”.

To reduce the complexity of the state space, robots must
exploit task-relevant structure. However, uncovering this struc-
ture may not be possible without crossing the boundaries of
different technical areas that have governed robotics research
for the last few decades. Some structure can only be revealed
through the conjunction of methods from two or more techni-
cal areas. For example, active segmentation [8, 13] uses ma-
nipulation and vision to generate motion — the most pertinent
signal for segmentation. Or, interactive perception [12] uses
manipulation and vision to identify kinematic structure. In both
cases, neither vision nor manipulation alone can reliably solve
the problem. Our first guideline is therefore:

• To devise competent and robust skills for unstructured
environments, skills must be task-centric and should
consider all technical areas relevant for implementing the
skill.

To make further progress, the field of autonomous mobile
manipulation has to address complexity incrementally. Simple
skills, such as the ones discussed in section II, provide a
grounding for more abstract representations. Those representa-
tions, in turn, can reduce the state space for higher-level skills.
As more and more skills become available, the dependencies



among skills becomes more complex. The challenges thus be-
comes to resolve the complex dependencies among skills and
discover which skills can facilitate the state space reduction
of more complex skills. Our second guideline is therefore:

• Robust, autonomous, sophisticated behavior of embodied
agents in unstructured environments will come about
by a careful bottom-up development/design/learning of
elementary to complex skills.

We believe that these two guidelines demonstrate how
by leveraging the right structure for the right problem and
building on top of other skills, high-level behavior becomes
possible. With enough of these building blocks, we hope that
robots will be able to perform tasks in high dimensional,
unstructured, and dynamic environments.
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