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Abstract
We address the problem of clearing a pile of unknown objects using an autonomous

interactive perception approach. Our robot hypothesizes the boundaries of objects in
a pile of unknown objects (object segmentation) and verifies its hypotheses (object
detection) using deliberate interactions. To guarantee the safety of the robot and the
environment, we use compliant motion primitives for poking and grasping. Every ver-
ified segmentation hypothesis can be used to parameterize a compliant controller for
manipulation or grasping. The robot alternates between poking actions to verify its
segmentation and grasping actions to remove objects from the pile. We demonstrate
our method with a robotic manipulator. We evaluate our approach with real-world
experiments of clearing cluttered scenes composed of unknown objects.
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1 Introduction
Autonomous manipulation of unknown objects in a pile (Figure 1) is a prerequisite
for a large variety of robotic applications ranging from household robotics to flexible
manufacturing and from space exploration to search and rescue missions. In this work,
we address the problem of identifying and removing unknown objects from a pile.
This is an important task as it enables necessary capabilities such as object counting,
arranging, and sorting.

Manipulating a pile of unknown objects is challenging because it requires close
integration of multiple capabilities, including perception, manipulation, grasping, and
motion planning. Moreover, because of the complexity associated with perceiving and
interacting with a pile of unknown objects, each of these capabilities can easily fail:
Object recognition may fail due to occlusion by other objects in the pile or difficulty to
determine object boundaries. Grasping can fail when object recognition fails, resulting
in an attempt to grasp at the wrong location or grasping multiple objects simultane-
ously. And motion planning is particularly prone to error when moving in an unknown
cluttered environment. Also motion execution itself must be careful to avoid damage
to the robot or the environment.

To address the above challenges, we propose an interactive perception approach in
which the robot can actively verify its understanding of the pile. Our robot segments
a scene into a set of object hypotheses. Next, the robot interacts with the environment
to verify the correctness of its segmentation hypotheses. A verified hypothesis corre-
sponds to an object’s facet, and is used to parameterize a compliant grasping controller.
After successfully grasping an object, the robot removes it from the pile and release the
object into a container. This process continues until all objects have been removed from
the pile.

The two main contributions of this work are: (1) the development of an interactive
segmentation and segmentation-verification algorithm for manipulating unknown ob-
jects, and (2) the integration of all aspects of perception, manipulation, grasping, and
motion planning into a single system. Our system is fully autonomous: the robot seg-
ments an object, interacts with it to verify that segmentation is correct, and instantiate a
compliant controller to either poke or grasp the object. In our current implementation,
the robot selects which object to poke or grasp next at random. However, in future
work, we intend to explore self-supervised learning of the best next action.

Our method allows for robust, reliable, and safe interaction in unstructured envi-
ronments because it relies on two pillars: interactive perception and compliant motion.
Interactive perception enables the robot to reveal and verify perceptual information.
In our case, interaction creates change in the environment, which enables the robot to
verify its initial segmentation hypotheses. If the robot fails to verify a segmentation
hypothesis, it can simply interact with the environment again. Once a segmentation
hypothesis is verified, perception provides reliable information for grasping an object
and removing it from the pile. And compliant motion enables safe interaction despite
the inevitable uncertainty in modeling and localization.

In the following we describe our system for autonomous clearing of a pile of un-
known objects. In section 2 we discuss related work. Then, we provide an overview of
our system in section 3, followed by detailed discussion of the three main components
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Figure 1: Perceiving and manipulating unknown objects in a pile with Andy (DARPA’s
ARM-S platform)

in sections 4- 6. Finally, we present experimental results demonstrating the robustness
of our method in section 7.

2 Related Work
Our algorithm is composed of three main components: an image segmentation algo-
rithm, an object detection algorithm, and compliant poking and grasping primitives.
We now discuss relevant work to these three components.

2.1 Scene Segmentation
Segmentation algorithms [7, 22] process an image and divide it into spatially contigu-
ous regions that share a particular property. These algorithms assume that boundaries
between objects correspond to discontinuities in color, texture, or brightness—and that
these discontinuities do not occur anywhere else. In practice, these assumptions are fre-
quently violated. Moreover, most segmentation methods become brittle and unreliable
when applied to clutter because of the significant overlap between objects.

A more reliable cue for object segmentation is motion. Segmentation from motion
algorithms analyze sequences of images in which objects are in motion. This motion is
either assumed to occur [8,19,23] or can be induced by the robot [14]. Relative motion
is a conclusive clue for object segmentation. However, existing methods only allow
planar motion and do not consider occlusion—both of which are unrealistic when in-
teracting with a pile of objects. In contrast, our interactive approach allows general 3D
motion and handles occlusion. It is composed of two parts: generating segmentation
hypotheses using geometric information and using interaction to verify these hypothe-
ses.
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Geometric segmentation algorithms extract geometrically contiguous regions to de-
termine the boundaries between objects [20, 21]. These algorithms rely on depth in-
formation acquired by RGB-D sensors. They are typically parametric methods, fitting
a set of predetermined shapes such as spheres, cylinders, and most frequently planes
to the data. These methods assume that objects can be described using a single shape
primitive. In practice, this is rarely the case. Moreover, these methods are unreliable
in clutter because objects overlap. We address these limitations with a non-parametric
approach. Our algorithm extracts region boundaries based on discontinuities in depth
and surface normals orientation.

Without prior knowledge, every segmentation algorithm becomes less reliable in
clutter. Also our non-parametric geometric segmentation algorithm can be confused
by object overlapping each other. We resolve this limitation using interactive percep-
tion. In our approach, segmentation generates hypotheses (object facets) that are veri-
fied with interaction. Verified hypotheses are those that were segmented as individual
regions before and after the interaction, and have moved as a result of the interaction.
This interactive process allows the robot to recover from segmentation errors, therefore
increasing the robustness and reliability of our method.

2.2 Object Detection
Object detection is the task of finding a given object in an image. It can be particularly
challenging in the face of changes in perspective, size, or scale, and when the object
is partially obstructed from view. There is an extensive body of work in computer
vision about object detection (or: object recognition) [7]. If an a priori CAD model
of the target object is available, edge detection or primal sketches can be used to find
a match [16]. When multiple images of an object are available, they can be used as
templates to find the closet match [1]. The most important limitation of methods that
rely on a priori models is that in unstructured environments such as our homes and
offices, those models are unlikely to be available for all objects.

An alternative to model based object detection employs a sparse object representa-
tion using key-points such as SIFT features [15]. Object detection requires extracting
key-points from two images (template and target), and computing pairwise matching
to determine whether the template appear in the target image. Object detection using
SIFT features requires a priori template images of individual objects. Our algorithm
generates templates on-line: it computes a segmentation of the scene into object facets,
and associates SIFT features with each facet. It then evaluates the similarity of two
facets (before and after some interaction) by matching their SIFT features. Because
SIFT matching alone may not be sufficient (e.g. featureless objects), our method con-
siders additional cues (color, size, and shape) to evaluate the quality of a match. The
resulting object detection algorithm is robust to changes in perspective, illumination,
and partial occlusions, and it does not require an a priori object model.

2.3 Grasping
Robotic grasping is very well studied. There is a variety of criteria that one could
use to evaluate and guide grasping. For example, the quality of the force/form closure
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can be used to determine the quality of a grasp [2]. These methods typically assume
that an a priori object model is available. If a model is not available, the object can
be first modeled by using stereo-vision [10] to extract contact points, by detecting
contours [10], or by learning grasp points from labeled images [18]. Then, grasping
proceeds based on the acquired model. Alternatively, modeling and grasping can be
merged into a single process where grasping hypotheses are continuously updated by
integrating sensor measurements as they become available [4, 17].

In this paper, grasping is used for transporting an object from a pile into a pre-
determined destination (container). We require that grasping is safe to the robot and
minimally disruptive to the pile. We guarantee the robot’s safety using compliant mo-
tion primitives, and our motion planner minimizes collision with other objects. Our
grasping and poking primitives are simple. They are instantiated using information ex-
tracted from perception: the center of gravity and principal axes of the target facet. This
simple approach towards grasping results in reliable interaction (see [13] for detailed
discussion).

2.4 Manipulation in Clutter
Only recently researchers have begun exploring manipulation in clutter. Existing meth-
ods such as [5, 11] focus on objects that are planar and move in parallel to the camera.
In [9] 3D objects and motions are allowed, but a priori models of all objects in the pile
are assumed. In contrast, our method acquires all necessary information from percep-
tion, and applies to general 3D objects and 3D motion.

In [5, 9, 11] grasping is performed using a simple parallel jaw gripper. The focus is
on singulating objects from the pile to guarantee enough free space around the object.
Then, grasping only requires information about the location of the object. In contrast,
our method allows grasping from within the clutter. We use the more complex Bar-
rett hand and compliant motion primitives that are instantiated based on the segmented
object facets. We consider collision with other objects and the dimensions and configu-
ration of the grasped object to plan the robot’s approach and grasp. Because singulation
is not necessary, and because grasping is informed by perception, our method is more
efficient, requiring an average of 2 interactions per object (poke and grasp), compared
to 6.6 interactions per object in [5].

3 Algorithm Overview
Our algorithm is composed of three components: object segmentation, object detec-
tion, and action selection and execution. Object segmentation generates object facets
hypotheses. This process is described in section 4. Then, the algorithm selects a can-
didate facet and interacts with it (poking). This is described in section 6. As a result of
the interaction, one or more objects (and therefore facets) have moved. The algorithm
now computes a new segmentation and compares it to the original segmentation. In this
step, we verify the correctness of segmentation by matching facets hypotheses before
and after the interaction. We only consider high probability matches and only those
associated with moved objects. This interactive process of verifying the correctness of
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Figure 2: Algorithm description: the algorithm segments the scene into hypothesized
object facets, pokes a facet, verifies segmentation by detecting moved facets that were
seen before and after the interaction, and grasps a verified facet. The process continues
until all objects have been removed.

segmentation is described in section 5. Finally, the algorithm selects a verified facet,
and a compliant grasp is executed to pick the object and transport it to a predetermined
destination, where the object is released. This process continues until no more verified
facets are available. Figure 2 illustrates the entire process.

4 Generating Object Hypotheses
In order to interact with unknown objects, we first generate a segmentation of the scene
into hypothesized object facets. A facet is an approximately smooth circumscribed
surface. It does not have to be flat (plane). Dividing an object into facets is intuitive and
repeatable under changes of perspective, lighting condition, and even partial occlusion.
To extract object facets, our algorithm identifies two types of geometric discontinuities:
depth discontinuities and abrupt changes in surface normal orientation. A segment
(facet) is an image region that lies between those discontinuities. Facet detection is
composed of the following three steps: computing depth discontinuities, estimating
surface normals, and image segmentation. This process is illustrated in Figure 3.

We compute depth discontinuities by convolving the depth image with a non-
linear filter. This filter computes the maximal depth change between every pixel and
its immediate 8 neighbors. If this distance is larger than 2cm, the pixel is marked as a
depth discontinuity. The 2cm threshold is due to our RGB-D sensor’s resolution.

The surface normal at every point of the 3D point cloud is estimated by fitting
a local plane to the neighborhood of the point. We then compute the normal to that
plane using least-square plane fitting. This can be done by analyzing the principal
components of a covariance matrix created from the nearest neighbors of the point.
The matrix C is computed as

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T
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Figure 3: Facet detection algorithm: The input (left) is an RGB-D image. The al-
gorithm extracts depth discontinuities (top) and normal discontinuities (bottom). The
resulting segmentation corresponds to object facets (right).

and vj satisfies

C · vj = λj · vj , j ∈ {0, 1, 2}

where k is the number of points considered in the neighborhood of pi, and p̄ represents
the 3D centroid of the set of k nearest neighbors. λj is the j-th eigenvalue of the
covariance matrix, and vj is the j-th eigenvector. Figure 3 provides a visualization of
the surface normals. The three angles of every normal are represented using the three
color channels (RGB).

Finally, we extract facets by overlaying the depth discontinuities over the surface
normals. The result is a color image representing both types of geometric discontinu-
ities (depth and surface normal orientation). Now, as Figure 3 shows, extracting facets
is equivalent to extracting contiguous color regions in an image. Therefore, we extract
facets using a standard color segmentation algorithm: the mean-shift segmentation al-
gorithm implemented in OpenCV.

Figure 4 shows three examples of facet segmentation. For every intensity image
(left column), there is a corresponding segmentation in the middle column. The right
column shows the corresponding point-cloud, and the red circle and axes mark a po-
tential action. We will discuss how such actions are generated and applied to objects
in section 6. For a more detailed analysis demonstrating the robustness of facet seg-
mentation we refer the reader to [12], where we conducted a series of experiments with
objects varying in size, shape, appearance, material and configuration.
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Figure 4: Experimental evaluation of facet detection. Left: pile on unknown objects.
Middle: segmentation of the scene into facets (color coded). Right: 3D view of the
scene. To interact with objects we instantiate compliant controllers with information
extracted from each facet: COG (red circle) and principal axes (red = principal axis,
green = secondary axis, blue = trinary axis).

5 Verifying Object Hypotheses

Segmentation generates a set of object facets hypotheses. We would like to use such
an hypothesis to inform grasping. However, without assuming prior knowledge, ob-
ject segmentation may not be reliable, particularly so in clutter. For instance, under-
segmentation can occur if two objects have similar appearance and touch each other.
They may be segmented as a single object.

Relying on a wrong segmentation to instantiate a grasping controller can be harm-
ful to both the robot and the environment. Under-segmentation may results in an at-
tempt to grasp multiple objects. Consequently, objects may fall and break. And over-
segmentation can lead to a wrong parameterization of the controller, resulting in an
unreliable grasp. Thus, verifying the correctness of our object hypotheses is crucial.

As visual and geometric information alone may not suffice, our algorithm leverages
another strong perceptual cue: motion. We verify the correctness of segmentation using
an interactive perception approach in which interaction becomes part of the perceptual
process. Our robot interacts with a candidate hypothesis (an object facet) in order to
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create relative motion. This interaction must be careful and safe. We achieve that with
a library of compliant controllers (described in section 6).

As soon as the interaction is over, we compute a second segmentation of the scene
into hypothesized objects. Now, a verified hypothesis must meet two conditions: First,
it is found in the segmentation before the interaction and is reliably matched with a
facet after the interaction. And second, the respective facet must have moved due to the
interaction. If both conditions are met, we consider the hypothesis to be verified. Note
that a single interaction in clutter typically disturbs several objects, resuliting in several
verified hypotheses. Even if only a single object is distrubed, it may be segmented into
multiple (verified) facets.

5.1 Computing Facets Similarity
Given two facets from before and after the interaction, how can we determine whether
they correspond to the same object facet? A naive answer is tracking the facet through-
out the interaction. This would be computationally efficient and takes advantages of
locality. However, because the manipulator is likely to obstruct our view of the ob-
ject during manipulation, and because other objects in the pile may create temporary
or partial obstructions, tracking becomes fragile and unreliable. Instead, we follow
the paradigm of object detection: for every facet before the interaction, we search the
results of segmentation after the interaction for a good match.

Facet matching computes the similarity between two facets by considering a vari-
ety of features. In our current implementation we have 8 different features: (1) Relative
Size compares the number of points in the point cloud associated with each facet. (2)
Relative Area compares the area occupied by the two facets. (3) Average Color and
(4) Color Histogram compare the average HSV color and the intersection of the color
histograms of the two facets. Finally, (5-8) SIFT Matching extracts and matches SIFT
key-points from one facet to another. It then computes a rigid body transformation
that best explains the mapping between the matched SIFT features. The rigid body
transformation is applied to the first facet. Finally, we measure the overlap between
the transformed facet and the second facet. We determine overlap by averaging the
pairwise distance between points in the two point clouds. Note that there are actually
two SIFT Matching features: one computes SIFT matching from the smaller facet to
the larger one (5) and the second from the larger facet to the smaller facet (7). Addi-
tionally, we have two binary features that indicate whether a rigid body transform was
determined (features 6 and 8). If we find too few SIFT matches or there is too much
disagreement between the feature matching and a good rigid body transform cannot be
computed, the binary feature is set to false. Otherwise it is set to true. All feature are
normalized to the range [0, 1].

Given the 8 features above, we now have to compute a similarity score for every
pair of segments. Naturally, some features are more indicative than others. In order
to assign the appropriate weight to the features, we labeled examples of 15 scenes,
each in 5 different configurations. For each scene, we had 10 pairs of before and after
segmentations (every two configurations of the same scene). In total, we acquired
labels for about 15000 pairs of facet, where only about 5% were positive examples.
We assumed that our problem is linear and convex, and applied a Stochastic Gradient
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Descent algorithm [3] to learn the appropriate weights. The learned weights are as
follows: Relative Size (4.618), Relative Area (2.543), Average Color (2.847), Color
Histogram (6.329), SIFT large to small (1.222), SIFT large to small valid (0.418),
SIFT small to large (3.628), SIFT small to large valid (0.348). Misclassification rates
on test data were on average 5%, and all of them were false positives, meaning that two
segments are not matched although they should be. We virtually encountered no true
negatives (declaring segments to match when they should not).

5.2 Facet Matching

Our algorithm computes facet similarity scores for every pair of facets. Oftentimes, it
is sufficient to pick for every facets the most similar facets as its match. In case the
similarity score is below some threshold (e.g. 50%), the match is discarded. How-
ever, when an object has multiple facets with similar appearance, there may be several
reasonable matches. This can be further complicated when several similar objects are
present in the scene. To identify the optimal pairing of facets, we create a graph with
two sets of vertices. One set contains a vertex for every facet before the interaction and
the other set contains a vertex for every facet detected after the interaction. We connect
a pair of vertices (one from each set) by an edge if the similarity likelihood is higher
than 50%. Then, to resolve the ambiguity created by multiple edges connected to the
same vertex, we compute bipartite matching [6], with the goal of maximizing the sum
of log-likelihood. Effectively, we are extracting a subset of the pairing that maximizes
the overall matching likelihood.

Finally, we only consider matched segments that have moved as a result of the in-
teraction. If a facet remained stationary, re-detecting it after the interaction does not
increase our confidence in the segmentation. The resulting matched-and-moved seg-
ments are verified segmentation hypotheses. We can now consider them for grasping.
Figure 5 demonstrates the performance of this segmentation hypotheses verification
process with three cluttered scenes. Objects vary in the type of material (rigid, flexible,
articulated), dimensions, configuration (position and orientation), colors, and texture.
The amount of motion and the number of moving segments is different in each ex-
ample. The results show that all moved facets were correctly detected and matched
(corresponding facets in figure 5 are color-coded).

6 Action Selection and Compliant Interaction

Our algorithm generates two types of interactions with the environment: poking and
grasping. During poking, the robot selects a facet based on the current segmentation
of the scene, and pushes it parallel to the support surface for 3cm. After poking, the
algorithm computes a list of verified segmentation hypotheses (matched and moved
facets). The robot then selects one of the verified facets, and grasps it. In this paper,
whenever the robot has multiple candidate facets to push or grasp, it selects one at
random. We consider this as baseline for future work in which we intend to have the
robot learn from its own experiences the best next action.
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Figure 5: Verifying segmentation hypotheses: every row shows a cluttered scene be-
fore (first column) and after some interaction (third column), and the corresponding
matched segments (color coded, second and fourth columns respectively). Matched
segments correspond to the same object facet, and have moved due to the interaction.
They are candidates for grasping. Matching works well for all types of facets: rigid,
flexible, or part of an articulated object; for different colors, sizes, positions, and ori-
entations; and for both small and large motion between the two views.

Poking and grasping in unstructured environments is challenging because the robot
has only partial and inaccurate knowledge of the environment. This leads to uncertainty
in modeling and localization. To overcome this uncertainties, we rely on a library
of compliant controllers which maintain proper contact with the environment during
the robot’s motion by responding to the detected contact forces. The robot motion is
planned using CHOMP [1] to minimize contact with the environment.

Our compliant controllers are described in detail in [13]. These controllers require
only minimal information to be instantiated: the center of gravity and principal axes
of the target object. To estimate the COG, we average the 3D position of all points in
the facet’s point-cloud. To estimate the principal axis of a facet, we compute principal
components analysis (PCA) on the corresponding point cloud. These estimations as-
sume that the density of a facet is uniformly distributed and the entire facet is visible
to the robot. In practice, both assumption are frequently violated. Yet, they provide
a good enough estimate. Figure 4(right column) shows an example of detecting the
center of mass and principal axes.
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facet COG and
principal axis

Figure 6: The Barrett hand, assuming a cup-like pre-shape, is aligned with the top facet
(in green) and located above the object

Figure 7: The steps of compliant grasping: the Barrett hand, assumes a cup-like pre-
shape, on top of the center of gravity and parallel to the principal axis. It moves com-
pliantly towards the object until contact is detected. The finger close onto the object,
and the object is grasped and transported to its destination.

We devised two compliant motion primitives: compliant grasping and compliant
poking (pulling/pushing) primitives. These primitives are velocity-based operational
space controllers. They rely on force feedback acquired by a force-torque sensor
mounted on the robot’s wrist. During the interaction, the robot’s fingers are coordi-
nated and position-controlled. The hand’s configuration for both primitives is instanti-
ated from perception (COG and principal axes of a facet). In this paper, we use a single
cup-like hand pre-shape (Fig. 6). Future work could consider additional pre-shapes
which can be determined using additional information about the shape of the object.

To grasp an object, we servo the hand along the palm’s normal, until contact is
detected between the fingertips and the support surface or the object. Then, we close the
fingers, while the hand is simultaneously servo controlled (up or down) in compliance
with the forces seen at the wrist in a closed-loop fashion. This ensures safe and proper
contact between the fingertips and the support surface (see Fig.7). Note that our goal
is to achieve a robust and firm grasp of an unknown object, and not positioning the
fingertips at specific object locations.
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Compliant poking is similar to the compliant grasping primitive. The launch pose
of the hand is the same as for grasping, and the action itself is executed by seroving the
hand towards (pull) or away from (push) the robot and in parallel to the support surface.
We have thoroughly tested the implementation of the two compliant primitives on a
robotic manipulator consisting of a 7-DOF Barrett Whole Arm Manipulator (WAM)
and a 3-fingered Barrett hand. Experimental results and detailed discussion of the
implementation is available in [13].

7 Experimental Results
To evaluate our algorithm, we conducted dozens of experiments with a robotic manip-
ulation system [1]. In our experiments, a variety of everyday objects were placed on a
table in front of the robot. Objects are placed in a pile. They often overlap and occlude
each other to varying degrees. The robot’s task is clearing the table by removing all
objects into a box.

Figures 8 and 9 show the steps taken by the robot to clear a pile of unknown objects
in one of our experiments. The sequence begins with a set of objects placed next or
on top of each other in an arbitrary configuration. The robot (1) segments the scene
into facets, (2) pokes one facet selected at random (using information extracted from
the target facet to instantiate a compliant controller), (3) verifies its hypotheses by re-
segmenting the scene and searching for matching moved facets, and (4) grasps one
verified facet (again, using information extracted from the target facet to instantiate a
compliant controller). The process continues until all objects have been removed.

In figure 8, the robot begins by poking the macaroni box. This action also disturbs
the blocks and the shampoo. The robot now decides to grasp the bottle of shampoo.
Next, the tissue box and the chunk of wood are pushed and grasped. The remaining two
objects (macaroni box and toy blocks) are clustered closely together. The robot pokes
the macaroni box, and then fails to grasp it because the hand hits the blocks. The failed
grasp does disturb the blocks, so a second grasping attempt occurs (without poking).
This time the robot successfully removes the blocks. Again, while removing the blocks
the remaining item (macaroni box) is disturbed and no additional poking is necessary.
The robot grasps the macaroni box and the process is completed successfully. Figure 9
shows the steps of the same experiment, as seen by the robot. The images are overlayed
with the detected facets.

In all our experiments the robot was able to remove all objects from the table and
transport them into the box. In our approach, for n objects, the robot requires about
2n interactions: poking to verify segmentation and grasping for removing an object.
Sometimes during grasping a neighbor object will be disturbed, allowing the robot to
verify its segmentation hypothesis without an additional poke. And, occasionally pok-
ing does not verify any hypothesis, requiring additional interaction. In our experiments,
the average was about 2 actions per object. This represents 3 times fewer interactions
compared to the 6.6 actions per object in [5].

The execution time of the algorithm can be divided into three components: per-
ception, poking and grasping. We measured the runtime for 100 instances of each.
Segmenting a scene into facets takes on average 20 seconds. Poking an object requires
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(a) Initial pile (b) Poking macaroni
box

(c) After poking (d) Grasping shampoo

(e) After grasping (f) Pooking tissue box (g) After poking (h) Grasping

(i) After grasping (j) Poking chunk of
wood

(k) After poking (l) Grasping chunk of
wood

(m) After grasping (n) Poking macaroni
box

(o) After poking (p) Grasping macaroni
box (failed)

(q) After failed grasp
(blocks disturbed)

(r) Grasping blocks (s) After grasping (mac-
aroni box disturbed)

(t) After grasping maca-
roni box

Figure 8: A sequence showing the performance of our algorithm with a pile
of unknown objects: a tissue box, a chunk of wood, a bottle of shampoo, a
box of macaroni, and toy blocks. The algorithm switches between pushing to
verify segmentation hypotheses and grasping to remove objects from the table.
Here, 10 actions are required to remove 5 objects. Videos are available at
http://www.dubikatz.com/autonomousManipulation.html

an average of 32 seconds, and grasping and transporting the object take another 58 sec-
onds. Thus, a typical sequence of segmenting-planning-poking-segmenting-verifying-
planning-grasping-transporting-releasing requires about 2 minutes. We note that the
robot’s motion is slow on purpose (for safety reasons), but can be accelerated.

We have encountered four types of failure modes. First, perception may fail to
segment an object if it is too small or incompatible with our sensor (e.g. depth cannot
be measured for transparent objects). Second, poking an object can fail to move the
object enough or can cause significant disturbance. In both cases facet matching may
fail, and the robot will have to poke again. Third, grasping may fail because of collision
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(a) Initial pile (b) Shampoo - removed (c) Tissue box - removed

(d) Chunck of wood - removed (e) Blocks - removed

Figure 9: The robot’s view of the scene during the experiment in Figure ??. Images are
overlayed with the detected facets.

(see for example Fig. ??), if the object is too small or too large to fit in the hand, or if the
object is slippery or flexible. Finally, occasionally an object will get out of the robot’s
reach or field of view. Future work could overcome these failures by considering better
sensors, more dexterous hands, and allowing the robot to move about its environment.

8 Conclusion
We presented a fully integrated system for manipulating unknown objects in clutter.
Our system incorporates sensing (RGB-D sensor), perception (segmentation and detec-
tion algorithms), control (a library of compliant controllers), and planning for collision
avoidance. It enables a robot to extract 3D object segmentation hypotheses using an
RGB-D sensor. Hypotheses are verified through deliberate interactions with the envi-
ronment. Verified segmentation hypotheses are assumed to correspond to object facets.
Our system relies on a library of compliant motion primitives, instantiated based on the
extracted object facets, both for poking and grasping. Grasped objects are transported
and released into a box.

Experimental results conducted with our manipulator (Figure 1) demonstrate that
our approach applies to a large variety of everyday objects placed in arbitrary con-
figurations and with significant overlap. Our system continuously interacts with the
environment until all objects placed in front of the robot are removed and placed in
a target box. To the best of our knowledge, this is the first example of autonomous
manipulation in clutter of unknown 3D objects.

We believe that this work is a prerequisite for more sophisticated pile manipulation.
Our future work will rely on self-supervised learning to enable the robot to choose the
best next action. For example, the right push may reveal much information, allowing
the robot to proceed with a sequence of grasps. Or, in some cases, the robot may choose
to rely on its initial hypothesis without verifying it (for example, if the segment is far
from any other segment, or if the robot has seen this object in the past).
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