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Abstract We propose factorization as a concept to analyze and solve manipulation
problems in unstructured environments. A factorization is a decomposition of the
original problem into factors (sub-problems), each of which can be solved much
more easily than the original problem. The appropriate composition of these fac-
tors results in a robust and efficient solution to the original problem. Our assump-
tion is that manipulation problems live in lower-dimensional subspaces of the high-
dimensional state space associated with unstructured environments. A factorization
identifies these subspaces and therefore permits finding simple and robust solutions
to the factors. In this paper, we examine the effects of factorization in the context of
our recent work on manipulating articulated objects in unstructured environments.

1 Introduction

Mobile manipulation in unstructured environments1 remains an important challenge
in robotics. Even after several decades of research, our ability to endow robotic
systems with general manipulation skills remains limited. What is the key to making
tangible progress in this domain?

In this paper, we hypothesize that fundamental progress in autonomous manipu-
lation can only be achieved through an understanding of how to adequately compose
simple perception, control, planning, and learning skills so that they incrementally
realize increasingly complex manipulation behavior.

Dov Katz and Oliver Brock
Robotics and Biology Laboratory, School of Electrical Engineering and Computer Science, Tech-
nische Universität Berlin, Germany

1 When using the term “unstructured” we refer to environments that have not been modified to
accommodate limitations of the robot. We consider providing a priori models to the robot as a way
to accommodate these limitations.
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This hypothesis may seem obvious. We believe, however, that it contrasts with
some common believes and practices applied in much of the current research in
robotics. Should the hypothesis prove to be correct, there would be important impli-
cations for how research in autonomous mobile manipulation should be conducted.

Within the manipulation community, some researchers argue that a break-through
in manipulation will be triggered by better sensing technologies. Such advances,
so the assumption, will lead to the availability of highly accurate models, even in
unstructured environments. The problem of acquiring those models is therefore de-
ferred to the sensor community and research proceeds under the assumption that
accurate models are available. This view is commonly taken, for example, in mo-
tion planning and grasp planning. In contrast, we believe that the perceptual prob-
lems associated with obtaining adequate models for task execution will remain very
challenging, irrespective of advances in sensor technology.

Another popular view is that the challenges of manipulation in unstructured en-
vironments may be addressed using ever-increasing computational power. Consid-
ering the recent successes of sampling-based motion planning and POMDP-based
approaches to planning, it seems credible that soon we will be able to plan in com-
plex environments while taking sensing and actuation uncertainties into account. In
contrast, we believe that the combinatorial explosion associated with problems in
unstructured environments will leave general planning for real-world environments
out of our computational reach for some time to come.

Why then do we claim that advances in manipulation can be achieved through a
suitable composition of perception, control, planning, mechanisms, etc.?

At a high level, our argument is about appropriate decompositions of high-
dimensional state spaces. The goal of decomposition is to find sub-problems that
can be solved easily and whose composition solves the original, more difficult prob-
lem. We refer to such a decomposition as a factorization, emphasizing that the
decomposition leads to simpler components (factors) that, when combined (mul-
tiplied), solve the original problem (equal the product). As an example consider
the expression a2− 2ab + b2, which can be decomposed as a2(1− 2b

a + b2

a2 ) or as
(a− b)(a− b). Clearly, both expressions are equivalent—they compute the same
number (or achieve the same functionality)—but the latter one is much simpler and
requires less computation. We only refer to the latter decomposition as a factoriza-
tion.

Solving complex problems by decomposition is hardly a new idea. In fact, the
fragmentation of robotics into sub-fields such as vision, control, planning, grasping,
and manipulation represents a particular decomposition of the “robotics” problem.
However, we believe that factorizations, i.e. “good” decompositions, do not natu-
rally coincide with the boundaries imposed by the traditional academic sub-fields.
Instead, we hypothesize that a factorization typically exploits synergies that arise
when these very boundaries are crossed.

Factorization will enable progress in manipulation for two reasons. First, they
lead to simple, efficient, and robust solution to manipulation problems, because
factorizations identify the low-dimensional subspace of the high-dimensional state
space within which the solution to the problem lies. Second, factorizations enable
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Fig. 1 UMan (UMass Mobile Manipulator) performs a manipulation task without prior knowledge
about the manipulated object. The right image shows the scene as seen by the robot through an
overhead camera; dots mark tracked visual features.

the incremental development of increasingly complex skills. Once the “right” factor
has been split off, the remaining product itself becomes easier to factorize. Choos-
ing a poor decomposition, however, may leave us with parts that are as hard to solve
as the original problem.

Let us consider for instance the problem of grasping. Grasping is often decom-
posed into perception, planning, execution, and mechanism design. Planning meth-
ods assume accurate models and determine force closure based on this informa-
tion. They have rarely, if at all, scaled to real-world environments. In contrast, con-
sider the impressive real-world performance of the shape-deposition manufacturing
(SDM) hand design by Dollar and Howe [9]. The hand has a single actuated degree
of freedom and is able to robustly and repeatably pick up objects of greatly differing
geometries, assuming the hand is positioned appropriately relative to the object.

A closer look at the decompositions used by these two approaches reveals why,
in our view, one is much more successful than the other. The classical approach
decomposes the problem along the boundaries of existing sub-fields into sensing
to build an accurate model and planning a grasp. Both of these sub-problems have
proved to be very difficult. Dollar and Howe pursue a different approach: they de-
compose grasp planning into determining a hand placement and closing the hand
around the object. We believe that these two factors are much easier to solve than
those of the classical decomposition, while achieving the same objective. Dollar and
Howe show that the second factor (closing the hand to form a stable grasp) can be
achieved easily for a variety of objects. They do so by leveraging compliance in the
hand design. Compliance provides resilience to uncertainty and eliminates the ne-
cessity for complex perception and accurate models. The solution chosen by Dollar
and Howe for the second factor thus has the potential of greatly facilitating the solu-
tion to the first factor—a sign of a good factorization. (A similar example of a good
factorization is RHex [2], the biologically inspired hexapod robot. Both of these ex-
amples can be viewed as instances of the more general concept of morphological
computation [27].)

In this paper, we evaluate our hypothesis in light of our recent work on manip-
ulation in unstructured environments [16, 17, 18] (see Figure 1). We show that by
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translating our metaphor of factorization into a practical method for manipulation,
a robot can autonomously obtain general domain knowledge for manipulation. Our
work is preliminary and not intended as a conclusive validation of our hypothesis.
However, we hope to be able to initiate a discussion about the most suitable way
for making progress towards autonomous manipulation capabilities in unstructured
environments.

2 Related Work

In our discussion of related work, we do not intend to survey research in manipula-
tion (please refer to [6, 19, 26]). Instead, we examine the relationship of factorization
to other areas of research and to prior work in robotics.

In the eighties, the psychologist Gibson [13, 14] questioned the separation of ac-
tion and perception. He argued that perception is an active process and highly cou-
pled with motor activities. Motor activities are necessary to perform perception—
and perception is geared towards detecting opportunities for motor activities. He
called these opportunities “affordances.” This view of perception stands in contrast
with the classical take on computer vision as “inverse optics”, proposed by David
Marr in 1982.

Gibson’s theories continue to be relevant in psychology, cognitive science, and
philosophy [24]. In a recent book, the philosopher-turned-cognitive-scientist Alva
Noë describes an “enactive” approach to perception. He argues that perception is an
embodied activity that cannot be separated from motor activities and that can only
succeed if the perceiver possesses an understanding of motor activities and their
consequences [23].

Similar “enactive” theories have been proposed for the development of cogni-
tive capabilities [31, 12]. These “enactive” theories, be it in psychology, cognitive
science, or philosophy, reject a functional separation of perception, thinking, and
acting (as in sense, plan, act). Such a separation is at odds with experimental evi-
dence in psychology and neuroscience and cannot hold up to the theoretical scrutiny
of philosophers. This evidence might suggest that the development of advanced ma-
nipulation capabilities in the context of robotics will greatly benefit from the reor-
ganization, and possibly the convergence, of existing sub-disciplines.

The trend towards eliminating the separation between perception, action, and
cognition has long been present in the robotics community. Brooks’ behavior-based
robotics [8] exhibits conceptual parallels with the theory of behavioral psychol-
ogy [25] (behaviorism). Both are, viewed simplistically, reactive paradigms. Based
on this paradigm, behavior-based robotics already departs from the sense-plan-act
paradigm and replaces it with hierarchies of reactive behavior [7], thereby overcom-
ing the separation between action and perception.

Psychologists have criticized behaviorism as it does not account appropriately
for the deliberate actions of an individual. The “enactive” perspective [31, 23] re-
sponds to this limitation by emphasizing the role these actions play in perception
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and cognition. It arrives at the conclusion that action, perception, and the associated
cognitive processes cannot be separated from embodiment.

We believe Noë’s theories lend support to our view that the simplest solution to
manipulation in unstructured environments does not necessarily have to—or maybe
even: must not—follow a strict separation between sensing, thinking and acting.

There is, of course, much work in robotics that is consistent with our hypoth-
esis. Active vision [1] and visual servoing [15], for example, tightly couple per-
ception and action (for a special set of skills). And we already discussed the use
of compliance in embodiment [2, 9] to replace aspects of traditional computation
with morphological computation [27], effectively crossing the boundary between
embodiment and action.

The work of Edsinger and Kemp in mobile manipulation [11] also follows sim-
ilar ideas. They “let the body do the thinking,” an idea similar to morphological
computation. They also emphasize the importance of task-relevant perception, a
consequence of close coupling between action and perception.

There are also a number of ongoing mobile manipulation projects that in our
view proceed along a different direction. These projects demonstrate impressively
what robotic systems can accomplish today, based on the integration of technologies
that has been developed within the boundaries of existing sub-fields. Among them
are the STAIR project at Stanford University [3], El-E at Georgia Tech [21, 22], and
HERB at Intel/CMU [4, 5]. All of these projects share one goal: they want to develop
robots that can perform manipulation tasks in everyday environments. Whether the
right path towards that goal will prove to be the integration of existing technologies
or the factorization of specific manipulation problems remains an open question.

3 Factorizing a Manipulation Skill

We now present a case study of factorization for manipulation skills in unstructured
environments. The specific skill we are interested in concerns the manipulation of
articulated objects. To reflect the fact that the robot operates in an unstructured en-
vironment, it initially has no specific knowledge about the objects it interacts with.
The robot plays with an articulated object until it has understood the object’s kine-
matic structure. Based on the acquired information, the robot then manipulates the
object into a given configuration. In the current scenario, illustrated in Figure 1, we
restrict the class of objects to planar kinematic chains, as the ones shown in Figure 2.

The ability to manipulate kinematic objects is elementary for a wide range of ma-
nipulation tasks (all prehensile manipulation tasks with rigid objects). We therefore
believe that the skill discussed here can serve as a sensorimotor foundation for more
complex manipulation tasks. We believe this manipulation skill represents a “good”
factor and will therefore facilitate the factorization of the other, more complicated
factors, i.e. it will be useful for the development of more complex capabilities. This,
of course, remains to be demonstrated in future research.
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Fig. 2 Two examples of kinematic structures: scissors with a single revolute joint and a wooden
toy with a prismatic joint and two revolute joints.

3.1 Action and Perception

Determining the kinematic structure of a planar articulated object is difficult based
on visual clues alone. It is equally difficult based on haptic interactions alone. When
using visual clues and interactive abilities together, however, the task becomes very
simple.

The key idea is simple: we use the embodiment of the robot to create a visual sig-
nal that facilitates the identification of the kinematic structure of articulated objects.
This means that the robot pushes the object and observes the resulting changes in
the scene (Figure 1). The observation consists of tracking the motion of visual fea-
tures in the scene. The motion of these features can be analyzed to determine the
kinematic structure of the articulated object and the approximate extent of the links.

The first step of our algorithm analyzes the motion of features to identify all
rigid bodies observed in the scene. The algorithm builds a graph G(V,E) from the
feature trajectories obtained throughout the interaction. Every vertex v ∈ V in the
graph represents a tracked image feature. An edge e ∈ E connects vertices (vi,v j)
if and only if the distance between the corresponding features remains smaller than
some threshold throughout the observed interaction. Features on the same rigid body
are expected to maintain approximately constant distance between them throughout
the entire observation. In the resulting graph, all features that lie on a single rigid
body form a highly connected component (see Figure 3). To separate the graph into
these components we use the min-cut algorithm. Identifying the highly connected
sub-graphs is analogous to identifying the object’s different rigid bodies.

The min-cut algorithm we use has worst case complexity of O(nm), where n
represents the number of nodes in the graph and m represents the number of clus-
ters [20]. Most objects possess only few joints, making m� n. Thus, for practical
purposes, we consider clustering to be linear in the number of tracked features.

This procedure of identifying rigid bodies is robust to the noise present in the
feature trajectories. Unreliable features randomly change their relative distance to
other features. This behavior places such features in small clusters, most often of
size one. In our algorithm, we discard connected components with three of fewer
features. This is a very simple and effective way to filter out sensor and tracking
noise. The remaining connected components consist of features that were tracked
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reliably throughout the entire interaction. Each of these components corresponds to
a rigid body in the scene.

The second step of our algorithm identifies the kinematic relationship among
rigid bodies. We will discuss this for revolute joints, prismatic joints and other algo-
rithmic aspects of the method are presented in detail in [16]. To find revolute joints,
our algorithm examines all pairs of rigid bodies identified in the previous step. Based
on their relative motion, it classifies their kinematic relationship as either revolute,
prismatic, or disconnected.

To find revolute joints, we exploit the information captured in the graph G. Ver-
tices that belong to one connected component must have maintained constant dis-
tance from all vertices in their cluster. This property holds for features on or near
revolute joints, connecting two or more rigid bodies. To find all revolute joints, we
simply search the entire graph for vertices that belong to two clusters (see Figure 3).

Fig. 3 Graph for an object with two revolute degrees of freedom. Highly-connected components
(shades of gray) represent the links. Vertices of the graph that are part of two components represent
revolute joints (white vertices).

After all pairs of rigid bodies represented in the graph have been considered, our
algorithm has determined appropriate explanations for their relative motions. Using
this information, we build a kinematic model of the object using Denavit-Hartenberg
parameters. This is illustrated for a real-world object in Figure 4. Note that both the
tool and the table have wood texture and color, making the vision problem difficult
for any color- or texture-based algorithm.

Fig. 4 Experimental results from [16] showing the extraction of the kinematic properties of a
wooden toy (length: 90cm) using interactive perception: The left image shows the object in its
initial pose. The middle image shows the object after the interaction. The color-coded clusters
of visually tracked features correspond to the rigid bodies of the toy. The right image shows the
detected kinematic structure (line marks the prismatic joint, dots mark the revolute joints).
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The robustness of this skill was demonstrated in dozens of real-world experi-
ments. The algorithm makes no assumptions about the kinematic structure of objects
in the scene (except for the kinematic structure being planar); it can handle serial
chains as well as planar branching mechanisms and kinematic loops. The algorithm
does not require prior knowledge of the objects, is insensitive to lighting condi-
tions and specularities, succeeds irrespective of the texture and color of the object’s
parts, works reliably even with low-quality video, and is computationally efficient.
At the same time, the algorithmic components of this interactive perception skill are
very basic (feature tracking, pushing, graph min cut). Nevertheless, the “right” com-
position of these simple ingredients results in an interactive manipulation skill for
unstructured environments that is extremely robust and computationally efficient.

3.2 Learning Effective Interactive Perception

So far we assumed that the robot’s interactions with objects in the environment were
scripted. Now we show how a robot can learn how to interact with its environments
in the most effective manner. In the process of performing a number of such self-
observed interactions, the robot gathers domain knowledge and is able to use this
knowledge to extract complete kinematic models with fewer and fewer interactions.

Fig. 5 Two objects with different
physical properties but identical kine-
matic structure: because their rela-
tional representation is identical, ex-
perience acquired with one can be
used directly to interact with the other

To enable learning in the domain of planar ar-
ticulated objects, we capture the robot’s experi-
ence in a relational representation. This represen-
tation is critical to the success of our learning-
based approach to manipulation. Using a finite
set of relations, we describe an infinite number
of states and actions. It thus becomes feasible
to represent and reason about situations that a
propositional representation cannot handle. For
example, a robot may encounter many types of
scissors, varying in color, shape, and size. All
scissors, however, have the same kinematic struc-
ture. A single relational formula can capture this
structure for all scissors, irrespective of other
physical characteristics. Therefore, a single rela-
tional action can be applied to all such objects
(see Figure 5). Furthermore, experience gathered
with one object can be applied to all objects that
contain the same kinematic substructure. Propo-
sitional representations, in contrast, require a proposition for every link in the kine-
matic structure, and one for every action. The relational representation avoids this
combinatorial explosion and makes learning possible.

Our relational representation for kinematic models of articulated objects captures
links, link properties, and kinematic relationships between links. Figure 2 shows
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two examples of planar kinematic structures. The scissors have a single revolute
degree of freedom and the wooden toy is a serial kinematic chain with a prismatic
joint (on the left of the figure) and two revolute joints. Our relational representation
uses predicates R(·), P(·), and D(·) to describe that rigid bodies are connected by a
revolute joint, a prismatic joint, or are disconnected, respectively.

The predicates are n-ary, with n ≥ 2, to capture branching kinematic structures.
The rigid body passed as the first argument to the relation is the one in relationship
with all other arguments. For example, R(x,y,z) is equivalent to R(x,y)∧R(x,z).
Using these relations, we can represent the kinematic structure of the scissors as
D(lb,R(l1, l2)), where l1 and l2 represent the two links of the scissors and lb is a
disconnected background link. The kinematic structure of the wooden toy if Figure 2
can be represented as D(lb,R(l4,R(l3,P(l1, l2)))). Note that this representation is not
unique. The wooden toy could also be represented as

D(P(l4,R(R(l1, l2), l3)), lb).

Which of these representations is used by the robot depends on the order of discov-
ery of the links. The most deeply nested relation is discovered first.

By extending our atomic representation of links to m-ary relations L(·), m ≥ 1,
we can include link properties in our description of kinematic chains. We will limit
ourselves to a single property, the size of the link. The wooden toy can now be
represented as

D(lb,R(L(s, f4),R(L(s, f3),P(L(s, f1),L(s, f2))))),

where s stands for the property small and the sets of visual features fi spatially
identify links in the physical world. The extension to an arbitrary number of link
properties is straightforward.

We also use a relational representation for the actions performed by the robot.
Actions apply pushing or pulling forces to one of the links. The forces can be applied
along the major axes of the link or along a forty-five degree angle to the major axes.
An action is represented as A(L(·),α), where L(·) represents a link and al pha is
an atom describing one of the possible six pushing/pulling directions relative to the
link.

Based on this relational representation, we cast the incremental acquisition of
kinematic representations of objects as a relational reinforcement learning [10, 28,
30] problem. We define a Relational Markov Decision Process (RMDP) [30] and
then apply Q-learning [32] to find an optimal policy.

A Markov Decision Process (MDP) is a tuple M = (S,A,T,R), where S des-
ignates the set of possible states, A is the set of actions available to the robot,
T : S×A→ Π(S) specifies a state transition function to determine a probability
distribution Π(S) over S, indicating the probability of attaining a successor state
when an action is performed in an initial state, and R : S×A→ R is a function to
determine the reward obtained by taking a particular action in a particular state. In
our case, the description of states and actions is relational and therefore we have
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a relational MDP. The details of this MDP and the learning algorithm are given in
reference [17].

The robot remembers each of its experiences from interactions with the world
by storing a tuple E(s,a,r) of state s, action a, and the Q-value, or reward, r ob-
tained when performing the action in that state. Because states and actions are
relational and stored un-instantiated, every stored experience describes a possibly
infinite number of experiences. These experiences serve as an instance-based repre-
sentation of the Q-value function.

Our relational representation of experiences permits the robot to leverage past ex-
perience, even if it has not previously visited the exact same state. Given the current
state, the robot retrieves the best action based on its experience of the most similar
previously encountered state. Similarity between states is determined by consider-
ing the state’s kinematic structure and the properties of the links in that structure.
Neither of these aspects have to match perfectly for the robot to retrieve relevant
experience.

We define a similarity measure using unification for approximately matching link
properties and structure, specifically sub-graph mono-morphism [29], for identify-
ing partial matches in kinematic structure between the current state and the robot’s
prior experience. The details of the similarity measure are given in reference [17].

By combining the interactive perception skill described in the previous section
with this learning framework, the robot can learn to extract kinematic models with
increasing effectiveness. It continuously interacts with articulated objects in the en-
vironment, stores its experiences, and remembers which actions lead to the discov-
ery of new rigid bodies and their kinematic relationships. This experience, in turn,
is used to guide further interactions.

To demonstrate the effectiveness of our learning-based approach to manipula-
tion in unstructured environments, we perform two types of experiments. First, we
show that our approach permits the learning of manipulation knowledge from expe-
rience. Second, we show that the acquired experiences transfer to previously unseen
objects.

Our experimental evaluation requires a large number of experiments. For practi-
cal reasons, we performed these experiments in a simulated environment. Due to the
robustness of the perceptual skill described in Section 3.1 and due to the simplic-
ity of force guided pushing required for our experiments, we argue that our results
remain valid in real-world experiments. Our simulation environment is based on
the Open Dynamics Engine (ODE), a dynamics simulator. The simulation includes
gravity, friction, and non-determinacy.

In each experiment, the robot interacts with an articulated object to extract its
kinematic structure. Example objects are given in Figures 5, 6, and 7. Revolute
joints are shown as red cylinders, prismatic joints are represented by green boxes,
and links are shown in blue. We only report on experiments with serial chains, even
though we have successfully experimented with branching mechanisms and kine-
matic loops. Perceptual information about the manipulated objects is obtained from
a simulation of the perceptual skill described in Section 3.1 [16]. We do not use the
simulator’s internal object representation to obtain information about the object.
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Each experiment consists of a sequence of trials. For each trial we report the
average over 10 independent experiments. A trial consists of a number of steps;
in each step, the robot applies a pushing action to the articulated object. The trial
ends when an external observer signals that the obtained model accurately reflects
the kinematic structure of the articulated object. The number of steps required to
uncover the correct kinematic structure measures the effectiveness with which the
robot accomplishes the task.

Each step of a trial can be divided into three phases. In the first phase, the robot
selects an action and a link with which it wants to interact. The action is instantiated
using the current state and the experience stored in the representation of the Q-
value function. In the second phase, the selected action is applied to the link, and
the ODE simulator generates the resulting object motion. The trajectories of the
visual features tracked by the perception skill are reported to the robot. In the last
phase, the robot analyzes the motion of visual features and determines the kinematic
properties of the rigid bodies observed so far. These properties are then incorporated
into the robot’s current state representation. With each step, the robot accumulates
manipulation experiences that improves its performance over time.

A trial ends when the kinematic model obtained by the robot corresponds to the
structure of the articulated object. In our simulation experiments, an external su-
pervisor issues a special reward signal to end the particular trial. Note that such a
supervisor is not required for real-world experiments. The robot can decide to per-
form manipulation based on incomplete information. If new kinematic information
is discovered during manipulation, the robot simply updates its kinematic model and
revises its manipulation strategy.

To demonstrate the ability of the proposed learning framework to acquire relevant
manipulation knowledge, we observe the number of actions required to discover a
kinematic structure. We compare the performance of the proposed grounded rela-
tional reinforcement learning approach to a random action selection strategy, using
an object with seven degrees of freedom and eight links (Fig. 6(a)). The resulting
learning curve is shown in Figure 6(b). Random action selection, as to be expected,
does not improve its performance with additional trials. In contrast, action selec-
tion based on the proposed relational reinforcement learning approach results in a
substantial reduction in the number of actions required to correctly identify the kine-
matic structure. This improvement already becomes apparent after about 20 trials.
Using the learning-based strategy, an average of 8 pushing actions is required to
extract the complete kinematic model, compared to the approximately 20 pushing
actions required with random action selection. This corresponds to an improvement
of about 60%.

This first experiment demonstrates that our approach to manipulation enables
robots to acquire manipulation knowledge and to apply this knowledge to improve
manipulation performance. To demonstrate that the manipulation experience ac-
quired with one object transfers to other objects, we perform two additional experi-
ments in which we observe the number of actions required to discover a kinematic
structure with and without prior experience.
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Fig. 6 Experiments with a planar kinematic structure with seven degrees of freedom (RPRPRPR,
R = revolute, P = prismatic). The learning curve for our learning-based approach to manipulation
(green solid line) converges to eight required actions with a decreasing variance, representing an
improvement of 60% over the random strategy (blue dashed line).

In the first experiment, the robot learns to manipulate a complex articulated ob-
ject with 5 revolute joints. After 50 trials, the robot is given a slightly simpler struc-
ture that only possesses four revolute joints. The simpler structure is a sub-structure
of the more complex one. We compare the robot’s performance after these initial 50
trials to another robot’s performance without prior experience (see Fig. 7(a)). Given
prior experience, the robot achieves convergence almost immediately. This corre-
sponds to a performance improvement of about 50% in the first trial, compared to
the robot without experience. After about ten trials, both robots achieve similar per-
formance, which is to be expected for simple structures that exclusively consist of
revolute joints.

In the second experiment, the robot learns to manipulate an articulated object
with 6 degrees of freedom (see Fig. 7(b)). After 50 trials, the robot is given a differ-
ent structure that is not a substructure of the other. We compare the robot’s perfor-
mance after these initial 50 trials to another robot’s performance without prior expe-
rience (see Fig. 7(b)). Again, experience results in a much faster convergence (after
only five trials) towards about five required interactions. In addition, the variance of
successive trials is reduced. After about 15 trials, both robots converge towards the
same number of interactions.

4 Effects of Factorization

How does our approach for extracting planar kinematic models from articulated
objects in unstructured environments relate to the concept of factorization?
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(a) Learning curves for a robot with experience manipulating the RRRRR object on the left
(solid green line) compared to an inexperienced robot (dashed blue line). Both robots learn to
acquire the kinematic structure of a simpler object (RRRR, middle). Experience leads to nearly
immediate convergence.
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(b) Learning curves for a robot with experience manipulating the PRRRRP object on the left
(solid green line) compared to an inexperienced robot (dashed blue line). Both robots learn to
acquire the kinematic structure of a simpler object (PRRP, middle). The simpler object is not
a sub-structure of the complex object. With experience, convergence is achieved in about five
trials.

Fig. 7 Experimental validation of transfer of manipulation experience between different articu-
lated objects.

The interactive perception skill described in Section 3.1 fuses action and per-
ception into a single framework. In this framework, the perception of kinematic
structures (model acquisition) is enabled through manipulation of the world. At the
same time, the successful manipulation of kinematic chains depends on these very
perceptual capabilities. As the robot manipulates kinematic structures, it continu-
ously observes the joint angles of the object. It can use this information to complete
the manipulation task, i.e. to move the object from its current configuration into a
goal configuration, even in the presence of uncertainty. The synergistic combination
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of action and perception reflects a factorization that leads to a simple and robust
skill for unstructured environments.

This stands in contrast with the traditional view of robotics, in which the problem
of manipulating articulated bodies in unstructured environments would be decom-
posed into model acquisition and manipulation. We believe that this is an inappro-
priate decomposition, resulting in an overly difficult perceptual problem that to our
knowledge has not been solved yet.

In our approach, the effects of factorization go beyond action and perception.
They extend to the robot’s world model, dividing it into an internal and an external
part (the world).2 Traditionally, the task of acquiring information about the world
and acting on that information are separated. Here, model acquisition and manip-
ulation are fused into a single framework. The robot can act on its incomplete and
possibly inaccurate internal model. Through deliberate interactions, additional in-
formation can be obtained from the world. The robot continuously incorporates this
new information into its internal model. This integration of action, perception, and
model acquisition in our factorization thus contributes to the robustness of our ma-
nipulation skill in unstructured environments.

Furthermore, the chosen factorization enables the robot to learn and subsequently
apply domain-specific manipulation knowledge. The effectiveness of learning in a
symbolic, relational domain directly depends on the relationship between the sym-
bols and the sensorimotor capabilities of the robot. For example, one could pick very
low-level symbols and perform learning using basic visual features. This would re-
sult in a simple perceptual task, putting most of the complexity into the learning
task. We believe that this is an inappropriate decomposition. In contrast, we choose
symbols that are directly grounded in task-specific sensorimotor capabilities of the
robot. The perceptual problem now consists of identifying kinematic degrees of
freedom. The learning problem derives its simplicity from the resulting relational
description of the physical world. This factorization appropriately distributes the
complexity of the overall problem. The result is a robust and efficient approach to
the manipulation of articulated objects in unstructured environments.

5 Conclusion

We examined the hypothesis that manipulation problems in unstructured environ-
ments must be addressed by a suitable composition of capabilities in the areas of
perception, action, learning, and model acquisition. We argued that such a com-
position can only be found if the boundaries between the traditionally established
sub-fields in robotics are ignored. Ignoring these boundaries makes it possible to
decompose manipulation problems into sub-problems that can be solved effectively
and re-composed to robustly solve the original problem. We refer to decompositions
that satisfy this requirements as factorizations.

2 Experimental evidence shows that the humans perceptual system greatly relies on the physical
world as part of its world model [23].
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To support our hypothesis, we presented and analyzed a manipulation skill for
planar articulated objects. We argued that the decomposition of the manipulation
problem reflected in this skill tightly integrates perception, action, learning, and
model acquisition. We view the robustness and effectiveness of this skill in un-
structured environments as initial evidence that factorization is a good conceptual
framework to guide research in this area. We hope that our arguments will initiate
a discussion about the most appropriate approach to manipulation in unstructured
environments. We are convinced that the reasoning presented in this paper in the
context of a single task will extend to other tasks and aspects of robotics in unstruc-
tured environments.

Should the concept of factorization prove to be indeed an important enabler of
progress for manipulation in unstructured environments, we believe there might be
interesting implications. For one, it would seem appropriate to shift emphasis in
robotics research from developing narrow, high-performance systems to building
robust, versatile, and integrated systems with lower-level capabilities that can be
brought to bear in a variety of problem domains. Furthermore, it would indicate that
progress towards truly autonomous robots can most effectively be made by focusing
on building up the competency of these integrated systems incrementally, starting
with very basic skills, such as the one presented here, rather than by integrating
best-of-breed approaches to individual facets of a real-world problem.
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